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Abstract - Although research with animals is often done under the assumption that visual abilities are similar across 

species, the visual ability of most animals, including orangutans, has not been experimentally evaluated. In this study 

we assessed the contrast sensitivity function (CSF) of two female zoo-housed Sumatran orangutans (Pongo abelii) 

aged 20 and 26 years old. Orangutans were rewarded for selecting vertical or horizontal square wave gratings at the 

correct orientation. Results showed a CSF similar in shape and position to that of human adults, although with lower 

contrast sensitivity. These lower values may be due to testing constraints or may be due to species differences. These 

data have implications for research on orangutan cognition, hominid evolution, and have practical implications for 

captive and wild management of this endangered species.  
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Primate vision shows similarities and differences across taxonomic and geographic divides as well 

as across habitat, life history, and ecological niche (Matsuno & Fujita, 2009; Veilleux & Kirk, 2014). For 

example, there are differences in color vision and visual acuity across nocturnal, diurnal, and cathemeral 

primates (Jacobs, 1977, 1996; Kirk, 2004; Matsui, Go, & Niimura, 2010; Ordy & Samorajski, 1968; 

Veilleux & Kirk, 2014). Eye morphology and visual system anatomy and physiology are similar within Old 

World monkeys and apes, but differences exist between these species and New World primates (Chan & 

Grünert, 1998; Waitt & Buchanan-Smith, 2006), and between haplorhine and strepsirrhine suborders of 

primates (Kirk, 2004; Veilleux & Kirk, 2009). Our closest relatives are the other great apes, yet there is 

limited information about either behavioral or physiological aspects of vision in these species. The purpose 

of the present study was to examine basic spatial vision limits in orangutans. Orangutans are often assumed 

to have identical vision to humans, and this assumption underlies cognitive testing with the species. 

However, there are few published reports of orangutan visual ability, and no reports of the orangutan 

contrast sensitivity function.  

Orangutan Life History 

Orangutans are an important species to study to understand great ape evolution because this species 

had an earlier phylogenetic split and geographic isolation in Asia from the African great apes. Evaluations 

of human phylogenetic relationships typically cite a common ancestor with chimpanzees (Pan troglodytes) 

6 million years ago (MYA), and a common ancestor with orangutans 14 MYA (Goodman et al., 1998). 

Genetic comparisons estimate the split between two extant species of orangutan, Sumatran (Pongo abelii) 

and Bornean (Pongo pygmaeus), to be 330 thousand years ago (Mailund, Dutheil, Hobolth, Lunter, & 

Schierup, 2011) or even earlier (Becquet & Przeworski, 2007). 

Orangutans also provide a valuable comparison to other great apes due to differences in ecological 
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niche. They spend more time in the tree canopy in comparison to other great apes and live predominantly 

in lowland areas, including peat swamps (Rijksen, 1978; van Schaik, 2004). This habitat is characterized 

by low-level light conditions, with mottled light that has been filtered through the leaves of the forest 

canopy. In these conditions orangutans must find food, which can be difficult to identify and requires 

extensive travel to locate (Rijksen, 1978). The majority of the Sumatran orangutan diet is fruit, but they 

also consume bark, leaves, pith, flowers, sap, roots, seeds, honey, fungi, mineral-rich soil, eggs, 

invertebrates, and meat, and some of these foods require precise manipulation and tool use (Hardus et al., 

2012; Rijksen, 1978; van Schaik, 2004; Wich et al., 2004). Like other primates, vision is their dominant 

sense, and thus relied on by orangutans to locate and identify these foods (Gilad, Wiebe, Przeworski, 

Lancet, & Pääbo, 2004; Matsuno & Fujita, 2009; Schrauf & Call, 2009). Vision is also crucial for arboreal 

travel. Because orangutans are large and heavy in comparison to other arboreal animals, accurate estimation 

of distance and quality of branch support is essential in preventing potentially fatal falls (Schmitt, 2010; 

van Schaik, 2004). Orangutan vision is also necessary for other aspects of daily life that require perception 

of fine detail and subtle contrast differences including tool use and viewing social partners (Rijksen, 1978; 

van Schaik, 1999, 2004), which they often perform in low light and in the forest canopy. 

 

The Orangutan Eye and Brain 
 

There are no reported empirical tests of orangutan vision other than a study showing that a Bornean 

orangutan could discriminate grey paper in comparison to red, blue, green, and yellow (Tigges, 1963). 

However, there have been some preliminary anatomical measurements of orangutan eyes and visual cortex. 

Hotta (1905) reported detailed measurements of the globe and retina of orangutans, along with 

chimpanzees, gorillas (Gorilla sp.) and gibbons (Hylobates sp.), and confirmed the presence of a fovea in 

all these species. In more recent studies, Kirk (2004, 2006) reported comparable measurements in one 

Bornean orangutan: mean transverse eye diameter of 22.8 mm, axial eye diameter of 22.6 mm, transverse 

corneal diameter of 11.6 mm, and an orbital aperture diameter of 36.1 mm, values similar to those of a 

chimpanzee (23.0, 21.8, 10.2, and 30.8 mm respectively). Montiani-Ferreira et al. (2010) noted that, while 

current knowledge about orangutan ocular anatomy and physiology is limited, orangutan eye physiology is 

similar enough to human eye physiology that human doctors were able to perform successful cataract 

surgery on a captive Bornean orangutan. Post mortem anatomical examination of the connections of short 

wavelength-sensitive (SWS) cones and horizontal cells in the retinas of a Bornean orangutan and a 

chimpanzee revealed similarity to humans in terms of the pattern of H1 versus H2 connections (Chan & 

Grünert, 1998). However, no other information about orangutan retinal organization is available. 

An excellent general description of the orangutan brain compared to those of other great apes and 

humans is provided by Zilles and Rehkämper (1988). They concluded that, in terms of gross features and a 

scale of encephalization, the orangutan is most similar to the gorilla with both these species showing lower 

indices of telencephalic and cortical development than gibbon, chimpanzee or human. In the only recent 

studies we are aware of in which orangutan visual cortex was investigated (Preuss, Qi, & Kaas 1999), the 

dense band of cytochrome oxidase staining seen in layer 4A of Old and New World Monkeys was absent 

in human, chimpanzee and orangutan. On the other hand, a clear difference was seen between human V1 

tissue and that of both the other great apes and the monkeys in terms of the pattern of presumed M-pathway 

targets in Layer 4A as revealed by immunological staining (Preuss et al., 1999, Preuss & Coleman, 2002). 

Finally, a recent study using post-mortem MRI measurements reported LGN and V1 volumes for three 

orangutans along with other great apes (De Sousa et al., 2010), and a second study of sectioned material 

from the same animals made cytoarchitectural comparisons of several cortical areas, including V1 across 

all the great apes (Semendeferi et al., 2011). Beyond these studies nothing is known of orangutan central 

visual pathways. 
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Limits of Primate Visual Ability 

 

Visual systems can be characterized in terms of the limits of their ability to encode spatial, temporal, 

and wavelength information about the changing visual environment. Extensive laboratory-based behavioral 

and physiological studies exist that compare human visual systems to the most frequently studied non-

human primate species, macaques, looking at all three of these properties but information is much more 

limited for the full range of primates, and particularly for nonhuman great apes. Spatial vision has been 

most widely investigated, followed by color vision (for a review see Matsuno & Fujita, 2009). Data on 

temporal processing (motion and flicker sensitivity) is largely lacking in nonhuman primate species outside 

macaques (Macacca fascicularis) (O’Keefe & Movshon, 1998) and chimpanzees (Matsuno & Tomonaga, 

2006b, 2008), yet is likely to be a critical sensitivity for skills such as arboreal travel. 

Spatial vision refers to the ability to distinguish changes based on luminance variation across the 

visual field and to use these changes as a basis for constructing a representation of the layout and identity 

of objects in the visual scene. The contrast threshold refers to the minimum detectable difference in 

luminance between adjacent spatial regions. It is typically measured in the laboratory using a periodic 

pattern of parallel lines (a square or sine wave grating) and systematically reducing the luminance difference 

between the lighter (initially white) and darker (initially black) bars until they are an indistinguishable 

middle grey. Contrast sensitivity (CS) is the reciprocal of contrast threshold. However, CS varies as a 

function of the width of the bars and the viewing distance, which together determine the angle subtended 

at the eye by the stimulus (visual angle) and the size of the resulting retinal image. For periodic stimuli such 

as gratings, this measure is expressed as spatial frequency (SF) or the number of cycles of grating making 

up one degree of visual angle (c/deg). The contrast sensitivity function (CSF) comprises the CS limit across 

the range of visible spatial frequencies. Under high luminance and optimal conditions, human and macaque 

CSFs show peak sensitivity between 2 and 5 c/deg with CS decreasing at lower and higher SF (Arundale, 

1978; Boothe, Kiorpes, Williams, & Teller, 1988; Campbell & Robson, 1968; De Valois, Morgan, & 

Snodderly, 1974; Ross, Clarke, & Bron, 1985; Williams, Boothe, Kiorpes, & Teller, 1981; see Table 1 for 

a summary of CSF findings in primates). Sensitivity values at the peak range from 150 – 300 (contrasts of 

0.3 – 0.6%) under optimal test conditions in these studies. The only study of CS in a non-human great ape 

(Matsuno & Tomonaga, 2006a) reported CSFs similar in shape although slightly lower in absolute 

sensitivity in four chimpanzees compared to the one human observer tested in the same apparatus. However, 

the location of the peak and the value of peak CS in this study were considerably lower than most values 

reported in the literature for human subjects (Arundale, 1978; Ross et al., 1985). 

The highest frequency (finest lines) at which a grating can be detected at maximum (100%) contrast 

is the spatial resolution or visual acuity limit. This limit, when extrapolated from a measured CSF, 

corresponds quite closely to acuity measures obtained by more traditional means, namely reducing the 

SF/size of high contrast grating or other pattern until the stripes or gap cease to be detectable (Jacobs, 1977; 

Langston, Casagrande, & Fox, 1986). When contrast is maximized, humans, pigtailed macaques (Macaque 

nemestrina), and long-tailed macaques (Macaca fascicularis) can distinguish over 30 c/deg, with acuity 

estimates averaging 35 – 50 c/deg (Arundale, 1978; Boothe et al., 1988; De Valois et al., 1974; Ross et al., 

1985; Williams et al., 1981).  
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    Table 1 

 

    The Contrast Sensitivity Function in Primates   

Authors 
Species (N, age); 

[Human comparison] 
Activity Method Luminance 

Peak SF; CS 

[Human] 

Extrapolated SF cutoff 

(CS = 1) 

       

Langston et al., 1986 Galago Otolemur crassicaudatus 

(N = 2, adult) 

Nocturnal MOCS 22 cd/m² 1c/deg; 100 2.6 & 4.4 c/deg 

Jacobs, 1977 Owl monkey Aotus trivirgatus  

(N = 2, adult);  

[H (N = 1, adult)] 

Nocturnal MOCS 11.4 cd/m² 1.5 – 2 c/deg; ≤100 ≤10 c/deg 

Merigan, 1976 Squirrel monkey Saimiri sciureus 

(N = 3, adult); 

[H (N = 2, adult)] 

Diurnal MOCS 3 cd/m² 2 – 5 c/deg; 95 - 

120; [H: 200] 

17 – 35 c/deg  

[H: 35 c/deg] 

De Valois et al., 1974 Macaque nemestrina; fasciculari  

(N = 2, 1, adolescent); 

[H (N = 5, 15 – 25 years)] 

Diurnal MOCS  17 cd/m² 3 – 5 c/deg; 100;  

[H: 200] 

40 – 50 c/deg 

Williams et al., 1981 Macaque nemestrina 

(N = 4, 5 – 18 months); 

[H (N = 2, adult)] 

Diurnal MOCS 27 cd/m² 3 – 6 c/deg; 150;  

[H: 300] 

40 – 50 c/deg 

Boothe et al., 1988 Macaque nemestrina 

(N = 7, 1 – 12 months) 

Diurnal MOCS 27 cd/m² 3 – 6 c/deg; 100 (1 

year) *variable 

30 – 50 c/deg (1 year) 

Campbell & Robson, 1968 Human study (N = 2) [adult] Diurnal Method of 

adjustment 

500 cd/m², & 

0.5 cd/m² 

4 c/deg; 300+ ~45 c/deg 

Matsuno & Tomonaga, 2006a Chimpanzee Pan troglodytes  

(N = 4, 21 – 28 years); 

[H (N = 1, adult?)] 

Diurnal PEST (1-up-1-

down) 

30 cd/m² 1 – 2 c/deg; ≤100 not specified 

Current article Orangutan Pongo abelii  

(N = 2, 20, 26 yr);  

[H (N = 3, adult)] 

Diurnal Staircase (2-

down-1-up) 

19 – 22 cd/m² 2 – 3 c/deg; 13 – 20 c/deg; 

[H: 30 – 45+ c/deg] 

    Note. Abbreviations: Human – H, Method of Constant Stimuli – MOCS. Human and macaque citations are representative of the studies focused on normal human and macaque CSF; normal            

    control CSFs are also reported in numerous clinical studies. 
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Visual acuity rather than contrast sensitivity has frequently been used as a basis for describing the 

visual ability of a species and for cross-species comparisons. For example, Veilleux and Kirk (2014) have 

described the relationship between acuity and eye size and shape, and related this to habitat considerations. 

However, practical as well as theoretical considerations led us to choose CS as our measure. Practically, in 

order to measure acuity it is necessary to have available a range of stimuli that tightly bracket the SF range 

in which the threshold is likely to fall. Based on overall anatomical, ecological, and behavioral similarities 

to the other great apes, we expected that the visual acuity of the orangutan might be very high (35 – 50 

c/deg) because values in this range have been reported in chimpanzees (Bard, Street, McCrary, & Boothe, 

1995; Spence, 1934; Weinstein & Grether, 1940), as well as in humans, as discussed above. Producing 

adequate acuity stimuli for human subjects is not difficult because very long viewing distances can be used; 

clinical eye charts, for example, are typically used at a viewing distance of 20 ft. However, it is difficult to 

train non-human species on tasks without close spatial contiguity between stimulus, response, and reward 

(see Cowey & Ellis, 1967, for discussion of this issue). For animals with much lower visual acuity (< 8 

c/deg), this can be successfully achieved using the Lashley jumping stand, in which the animal jumps 

toward a visual pattern (lemur Eulemur macaco flavifrons: Veilleux & Kirk, 2009; gerbil Meriones 

unguiculatus: Wilkinson, 1984), or as in the Mitchell adaptation for cats (Felis catus), jumping down onto 

a patterned surface (Mitchell, Giffin, Wilkinson, Anderson, & Smith, 1976). However, it is extremely 

difficult to produce, either by digital printing or electronically, a grating pattern as fine as 50 c/deg when 

within reach of the subject. In a highly constrained laboratory situation, it is possible to create the 

impression of such contiguity by having the animal look through a mask or through push-panel windows 

toward stimuli placed at some distance at the end of tunnels, which mask out all other visual stimulation. 

However, this was not feasible in a zoo setting. To give the reader an understanding of the fine scale of 

patterns needed to reach human or macaque acuity limits at close range, imagine painting a set of 50 pairs 

of precisely equally wide black and white lines across the width of your fingernail, and then hold the finger 

at arm’s length from your eye. Such a pattern is exceptionally difficult to produce and impossible to 

calibrate. So practically, it was more feasible to measure contrast thresholds using lower frequency (2 – 15 

c/deg) printed patterns that the animals could physically contact. 

There are also theoretical reasons to measure CS rather than acuity. The CSF is now understood to 

reflect the envelope of sensitivities of multiple spatial channels within the visual pathway, carrying 

information at several different spatial scales (Campbell & Robson, 1968; Lesmes, Lu, Baek, & Albright, 

2010; Wilson & Giese, 1977) and thus, gives a more complete picture of spatial sensitivity. CSFs have been 

measured in a wide range of species including cats, pigeons, several rodents and several primates (see 

Uhlrich, Essock, & Lehmkuhle, 1981, for review, and Table 1 for primates), and the general form of the 

CSF is similar across species, if normalized for maximum sensitivity and scaled in terms of distance from 

the peak frequency in octaves (factors of 2) (Uhlrich et al., 1981). Because acuity is simply the limit of the 

CSF – the SF beyond which even 100% contrast patterns cannot be resolved, it can be extrapolated from 

the CSF provided enough values are tested to adequately determine the shape of the function. Finally, it has 

been argued that the CSF has more relevance to daily life than acuity (Owsley & Sloane, 1987), and this is 

likely also true for orangutans. Very few meaningful stimuli in the animal’s natural world occur at 

extremely high SF and 100% contrast. Most stimuli of importance in daily life, for example, the facial 

expression of a conspecific or a branch while brachiating, entail lower contrast and spatial frequencies well 

below the acuity limit. 

 

Purpose and Approach of the Present Study 

 

When the possibility of evaluating spatial vision in Sumatran orangutans at the Toronto zoo 

emerged, there were both theoretical and practical reasons to do so. Visual stimuli have been used in 

cognitive experiments with orangutans to assess abilities such as memory (Swartz, Himmanen, & 

Shumaker, 2007), numerosity (Vonk, 2014), categorization (Marsh & MacDonald, 2008; Vonk & 

MacDonald, 2004), spatial cognition (Marsh, Spetch, & MacDonald, 2011), and language and symbol use 
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(Miles, 1990), yet there was no basis other than assumed similarity to human visual ability to guide stimulus 

design. Secondly, assessment of orangutan vision has practical application in regards to zoo management 

and veterinary baselines, especially important for maintaining this Critically Endangered species 

(Singleton, Wich, Nowak, & Usher, 2016). And more theoretically, evaluating continuity and discontinuity 

in abilities across great apes, other primates, and other animals, can inform our evolutionary understanding 

of ancestral Hominoidea and primates in general.  

The limitations of the zoo environment precluded the use of the highly controlled stimulus 

presentation sources used in earlier CSF and acuity studies of humans and other diurnal primates. In any 

case, the technologies generally used in the past (analogue oscilloscope displays, Ives visual acuity tester) 

are now obsolete and hard to obtain, and modern digital displays present other challenges in terms of 

luminance calibration. Instead, we turned to methods developed in laboratory studies of preverbal children 

and animals using hard-copy stimuli. Whereas many CS studies have been based on the discrimination of 

grating patterns from a matched homogeneous grey, it is difficult to obtain perfect luminance matches with 

printed stimuli. Instead, we chose to use the more difficult discrimination between vertical and horizontal 

grating patterns, which allowed us to use the same physical stimuli as either vertical or horizontal simply 

by rotating them. Because of the need for stimulus-response spatial contiguity, we used a set-up in which 

the orangutans could physically touch the stimulus. Our goal was a modest one – to measure contrast 

thresholds at several spatial frequencies that would include values close to the peak of sensitivity, and values 

at frequencies that we anticipated might fall on the declining portion of the CSF, thus allowing us to plot 

the shape of the function. This, we hoped, would allow us to extrapolate an acuity estimate even though it 

was beyond our capabilities to create sufficiently fine grating patterns to capture the resolution limit of the 

system. Despite limitations encountered in producing extremely low contrast gratings, we were successful 

in achieving contrast threshold measures in two orangutans, which we compare to human participants, and 

to existing chimpanzee data (Matsuno & Tomonaga, 2006a). 

 

Method 

 

Subjects 

 

Two of six Sumatran orangutans (Pongo abelii) residing at the Toronto Zoo participated in the 

study. All six orangutans were screened; however only two reached the initial training criterion within three 

months of training. The two subjects were both captive-born adult female orangutans. Sekali was 20 years 

old and Ramai was 26 years old. The study was conducted in the context of the orangutans’ regular schedule 

and environment, and participation was completely voluntary. Orangutans had ad libitum access to water 

and their diet was not altered. Data were collected in the off-exhibit holding enclosures where there were 

climbing structures, bedding materials, and items for behavioral enrichment such as buckets and toys. The 

orangutans could also see and hear their conspecifics, so motivation and participation fluctuated due to 

these distractions. This study complied with the ethics and research protocols of York University and 

Toronto Zoo, and the laws of Canada. 

 

Apparatus and Stimuli 

 

Stimuli were presented to the orangutans on a wooden display unit measuring 57 x 45 x 42 cm. The 

display unit had two podiums (left and right), which held the stimuli 17 cm apart (Figure 1). The unit also 

had a movable panel to obscure the orangutan’s view of the stimuli in between trials. Once the orangutan 

was sitting, the unit was placed so that the stimuli were at a distance of 57 cm from the eyes of the orangutan. 

This distance was verified frequently, and remained constant because the orangutans held their faces against 

the mesh of the enclosure. If the orangutan moved or changed position, the location of the apparatus and 

distance were readjusted and confirmed. The orangutans used a wooden dowel to select the stimulus. 
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Figure 1. Stimulus display unit. During testing the stimuli were centered on the podiums with one oriented horizontally and one 

oriented vertically. 

 

 

We created square wave grating stimuli using Adobe Photoshop CS5 computer software, printed 

them on non-glossy photo paper using a Canon Pixma MG6220 ink jet printer, and cut them into 12 x 12 

cm squares. At a distance of 57 cm from the orangutan’s eyes, one centimeter is equivalent to one degree 

of visual angle, so each stimulus subtended 12 x 12 degrees of visual angle. The target and comparison 

stimuli did not differ; they were taken from the same set of printed gratings. On each trial, two stimuli were 

selected from the set and placed on the display unit with one oriented vertically and the other horizontally. 

We printed a new set of stimuli for each testing day to ensure that there were no identifying marks on the 

stimuli. The orientation and/or the position of the stimulus cards was shuffled between trials so that across 

trials individual cards appeared as both target and comparison, and on both left and right podiums. Stimuli 

were replaced immediately if any identifying marks occurred. 

The stimuli were printed for 2, 4, 10, and 15 c/deg when viewed at a distance of 57_cm. A set of 

lower frequency stimuli (0.5 c/deg) was produced for training purposes. We printed each of the four spatial 

frequencies at seven levels of contrast. Contrast values ranged from the highest to the lowest contrast that 

could be produced by the printer and computer software. The actual contrast values of the stimuli were 

obtained from luminance measurements made with a Minolta LS-100 photometer (Table 2). Maximum and 

minimum luminance values were used to calculate the Michelson contrast as follows:  

 
The photometer was used to measure the Michelson contrast in multiple locations within the testing 

area over two days and found reliability in the values across locations and days. Contrast sensitivity (CS) 

was calculated as the reciprocal of the threshold (CS = 1 / Contrast Threshold). The overall average 

luminance of all stimuli was similar, ranging between 19 – 22 cd/m2 across stimuli. 
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Table 2 

Average Michelson Contrast Values for Stimuli 

Staircase  

Step 
Michelson Contrast SD Percent Contrast Contrast Sensitivity 

1 0.93 .00 93 1.08 

2 0.56 .02 56 1.79 

3 0.44 .02 44 2.27 

4 0.31 .02 31 3.23 

5 0.15 .03 15 6.67 

6 0.09 .01 9 11.11 

7 0.03 .03 3 33.33 

 

Procedure 

 

The orangutans were randomly assigned to select a target, with Sekali trained to select vertical and 

Ramai trained to select horizontal lines. On each testing trial two gratings were displayed, one oriented 

vertically and one oriented horizontally, matched in SF and contrast. Left and right locations of the target 

stimulus were in a predetermined order that was randomized and limited to three successive trials at a 

location. A research assistant loaded the two stimuli onto the two podiums of the display unit so that the 

experimenter was blind to the location of the target stimulus. On each trial the experimenter removed a 

panel to reveal the stimuli to the orangutan, but the stimuli were out of view of the experimenter. Once the 

orangutan had made a selection by touching a podium with the dowel, the experimenter verified whether 

the orangutan had selected the target by leaning forward and peeking over the display unit to see the stimuli. 

If the target was correctly selected, the orangutan was reinforced immediately with either verbal praise: 

“Good job.” for Sekali or a whistle for Ramai. The orangutans also received a food reward: small pieces of 

fresh or dried fruit, nut, or candy. If the orangutan selected the comparison stimulus instead of the target, 

the experimenter tapped on the correct stimulus with a finger and said: “This one.” for Sekali or remained 

silent for Ramai. The experimenter then closed the display unit and did not offer a food reward. Selection 

was defined as the first stimulus that the orangutan touched with the dowel. Any unclear selections, such 

as touching the space between the podiums, were recorded as incorrect trials.  

The initial training stimulus was a highly visible grating (0.5 c/deg and Michelson contrast of 0.93). 

Early training consisted of up to 60 trials per day to maximize learning given the constraints of the zoo 

schedule. Discrimination testing began on the first day that the orangutan selected the target stimulus on 17 

out of the first 20 trials. Discrimination testing consisted of 20 trials per day on three consecutive days. 

Once the orangutans reached the criterion of 17 out of 20 correct selections across three consecutive testing 

days, then this was followed by a generalization phase with gradually increasing SF and gradually 

decreasing contrast. The orangutans were slowly acclimated to these stimuli because the more difficult 

stimuli resulted in more errors, less reinforcement, and increased agitation in the orangutans. This phase 

continued three times a week for several months before our final threshold testing; access was limited due 

to the zoo schedule and training sessions were sometimes prevented for practical reasons. 

For our final threshold measurements, we used the staircase method of stimulus presentation 

(Cornsweet, 1962; García-Pérez, 2001). The seven contrast levels served as the steps of the staircase. The 

staircase began at the highest contrast (easiest step) and progressed through the contrast values to the lowest 

contrast (most difficult step). At the start of each staircase, a single trial was given at each contrast beginning 

at the easiest until the orangutan made the first error. Then we switched to a 2-down-1-up rule: the orangutan 

now had to complete two correct trials at each contrast step before progressing to the next more difficult 

contrast (“2 down”), and whenever an error occurred we immediately returned to the previous step (“1 up”). 

Simulations using this criterion track a threshold level of 71% correct responses (Garcia-Perez, 2001). Each 

change in direction in the staircase is referred to as a reversal. A staircase was continued until eight errors 

had been made, and thresholds were calculated by averaging stimulus values (log contrasts) at the last six 

reversals. On each of the three testing days, the orangutans completed four separate staircases, one for each 
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of the four grating frequencies (2, 4, 10, and 15 c/deg). The order of presentation of staircases was 

counterbalanced across testing days. Thresholds were averaged over the three days for each spatial 

frequency and CS at that SF (1/threshold) was calculated. 

A quality check with three human observers was completed to verify the validity of the apparatus 

and stimuli; this was done using the same apparatus and stimuli, under lighting that matched the stimulus 

luminance used at the zoo. However, due to practical circumstances this was carried out in a laboratory 

setting where ambient lighting could be controlled and adjusted to match measurements made at the zoo. 

 

Results 

 

Training Results 

 

Sekali reached the training criterion with the 0.5 c/deg stimuli after approximately six weeks of 

training three days per week. Ramai took much longer to learn the discrimination, meeting the criterion 

after 10 weeks. Interestingly, Ramai reached the criterion three training days after we switched her 

procedure from verbal feedback with a food reward, to a whistle-blast with a food reward. A whistle was 

never used for Sekali. Individual differences in motivation and social behavior were the reason for this 

change in procedure; we observed that Ramai was less motivated by social reinforcement, and easily 

distracted by a human voice and eye contact. In contrast, Sekali demonstrated high motivation in response 

to social reinforcement. 

 

Threshold Values Produced by Staircase Procedure 

 

A threshold was estimated from each staircase run by averaging the contrast values at the last six 

reversals of the staircase. Contrast sensitivity scores (reciprocal of threshold) for each orangutan on each 

test day at each test SF are shown in Table 3, along with their CS averaged across the three test sessions. 

CS was highest at 2 c/deg for both orangutans and declined gradually as SF increased. Figure 2 shows 

sample staircase data for Sekali at the lowest SF tested (2 c/deg) and for Ramai at the highest SF (15 c/deg). 

These figures reveal two problems encountered using the staircase that led us to believe that the thresholds 

measured underestimate the orangutan’s optimal performance, particularly at low SF. As can be seen in 

Figure 2A, despite extensive prior experience with these stimuli, some learning effect was evident with the 

staircase procedure in that more errors were made at the higher contrasts on the first run than on the later 

runs. This general pattern was displayed by both orangutans at the lower SF (2 and 4 c/deg) and by Sekali 

at the higher frequencies as well. Secondly, it is clear that at 2 c/deg Sekali shows a ceiling level of 

performance with most trials at the most difficult stimulus level. In the final session, after two errors she 

made 23 consecutive correct responses to this stimulus; and there were several instances of runs of six or 

more consecutive correct responses at the lowest contrast step at SF of both 2 and 4 c/deg. While not 

showing such a pronounced ceiling effect, Ramai also achieved runs of five consecutive correct responses 

for both of these lower SF. This indicates a serious limitation of the printed stimuli we used; the lowest 

contrast (0.03) we were able to produce was equivalent to a CS of only 33, whereas CS values of over 150 

(contrast < 0.007) have been reported for humans. Thus from the staircase data alone we are not able to 

make a good estimate of CS at low SF. 
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Table 3 

Contrast Sensitivity Averaged Over the Last Six Reversals from Three Testing Sessions 

 Testing day 2 c/deg 4 c/deg 10 c/deg 15 c/deg 

Sekali Day 1 19.25 17.67 2.31 2.90 

 Day 2 13.52 19.25 11.30 2.44 

 Day 3 33.33a 14.38 4.16 8.61 

 Average CS 22.03 17.10 5.92 4.65 

Ramai Day 1 14.77 5.85 2.71 1.39 

 Day 2 16.23 11.98 1.73 1.53 

 Day 3 17.67 14.72 2.24b 1.44 

 Average CS 16.23 10.85 2.23 1.45 

aOn Day 3 Sekali selected the target stimulus at the lowest contrast at 2 c/deg for 23 sequential trials so the trial was concluded 

after two warm-up errors (40 trials total). 
bOn Day 3 Ramai only had four reversals despite eight errors due to a drop in affect. 
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Figure 2. Examples of staircase progression for Sekali at 2 c/deg (A) and Ramai at 15 c/deg (B); trial number is plotted against 

contrast sensitivity step for three days. With successful performance, the orangutan progresses down the staircase from high 

contrast (0.93) to the lowest contrast (0.03) steps. Note that the contrast steps do not represent equal increments in contrast, and 

due to the number of trials, the scales are not the same. 

 

 

At the highest SF tested (15 c/deg; see Figure 2B) Ramai’s performance was close to chance, 

suggesting that we were able to approach the acuity limit with our available stimuli. Not apparent from the 

graph is the fact that approximately 50% of trials at the highest contrast (0.93) were errors but, as we were 

at the top of the contrast scale, the staircase could not go further up. Sekali showed poor performance on 

the first day she was tested with the higher frequency patterns, and improved although performance was 

quite variable thereafter.  

Thus, based on the staircase analysis alone, we can say only that the CSF of both orangutans peaked 

at 2 c/deg or below, and that at the high end, the orangutans were approaching or had reached the acuity 

limit (CS = 1) by 15 c/deg. Factors beyond our control precluded more extensive testing. Therefore, in order 

to optimize our threshold estimates, we have also used a second approach to analyzing the staircase data.  
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Analysis Using Percentage of Correct Responses 

 

Although under ideal conditions adaptive procedures like the staircase track thresholds efficiently, 

they provide little information about performance at superthreshold stimulus values. In order to take 

advantage of all the data collected, we also looked at cumulative scores (% correct) on each contrast/SF 

combination tested. This allowed consideration of all trials (N = 835), rather than just the reversal trials (N 

= 144). In order to estimate thresholds from this data we plotted the percent correct scores against log 

contrast for each SF for each orangutan, fit these data using a Quick function (Quick, 1974) and defined the 

threshold as the interpolated 75% correct value. 

Contrast sensitivity values (1/threshold) derived from the staircase (red) and Quick function (blue) 

thresholds are plotted against SF in Figure 3. The average of the staircases (red) is derived from Table 3. In 

order to obtain an estimate of the function that would relate CS to SF over the full SF range, we adapted 

the model used by Wilson and Giese (1977) to fit human data for sustained stimuli:  CSF = A* ω * e -ω/σ 

 

 
Figure 3. Contrast sensitivity function of the two orangutans: Sekali (A) and Ramai (B). The log scale of CS is plotted against log 

scale of spatial frequency (2, 4, 10, 15 c/deg). The red line indicates the CSF derived from the staircase, and the blue line shows 

CS from the percent correct Quick fit.  

 

Spatial frequency is denoted by ω. The function has two free parameters: A is a gain factor 

determining the overall height of the function and σ is the SF at which the function peaks. In Figure 3, the 

dashed red and blue lines are the best fits to the thresholds estimated from the staircase and Quick function 

analyses respectively for Sekali (Figure 3A) and Ramai (Figure 3B). For both orangutans, estimates of 

grating acuity (CS = 1) are very similar using the two threshold estimate techniques (Sekali: 19.5 & 16.2 

c/deg; Ramai: 15.0 & 13.5 c/deg). Although the Quick function measurements yielded higher CS at low 

SF, peak sensitivity was predicted in the same region (2.4 – 3.5 c/deg) for both orangutans and model fits. 

It should be noted that this model, which is based on human sustained data, has a low-frequency fall-off 

built into it. Based on our behavioral data alone, both orangutans showed greatest sensitivity at 2 c/deg, so 

we cannot rule out the possibility that the shape of the underlying function peaks at or even below 2 c/deg 

in this species. Further testing with lower contrast stimuli at these SF would have provided more 

information about the curve; however, this was the lowest contrast that we could produce with the printer 

and we would have faced parallel difficulties displaying reliable contrast on a screen. 

For the purpose of comparison, we used the same model to fit the CS data for four chimpanzees 

and one human published by Matsuno and Tomonaga (2006a; see Figure 4A); exact data values were 

generously provided to us by the authors. In their study, thresholds were measured over a range of five SF 
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from 0.5 to 8 c/deg. As can be seen in Figure 4A, the chimpanzee and human functions are a very good fit 

to the data, and peak sensitivity falls between 1 and 2 c/deg for all chimpanzees and for the human tested 

under comparable conditions. In Figure 4B we compare those data to the CSF functions (Quick thresholds) 

for the orangutans shown in blue. Here we have combined the data of three chimpanzees with similar data 

to produce an “average chimpanzee function.” The fourth chimpanzee (C3 in Figure 4A) showed lower CS, 

possibly due to an ocular problem that was detected later (T. Matsuno personal communication Jan 28, 

2016; Kaneko, Sakai, Miyabe-Nishiwaki, & Tomonaga, 2013), so it was not included in this average. It is 

clear that while overall sensitivity was lower in the orangutans, peak sensitivity lies at the same SF and 

visual acuity, as estimated by extrapolating the function to CS = 1, is at least as high in the orangutans as 

in the chimpanzees in Matsuno and Tomonaga (2006a).  

 

 
 

Figure 4. (A) CSF fits to the data of four chimpanzees and one human control generously provided by Matsuno and Tomonaga 

(2006a). Chimpanzee 3 was later found to have an arachnoid cyst in the visual area (Kaneko et al., 2013). (B) CSF for Sekali and 

Ramai fit as described in the text and displayed with the functions fit to the Matsuno & Tomonaga results for comparison; For 

Sekali and Ramai solid lines are used for the portion of the curve derived with actual data and dashed lines for extrapolated data. 

Also shown are staircase-derived contrast thresholds for two human subjects tested with our procedures and stimuli. Data points 

with arrows indicate the highest SF at which their performance was 100% correct for our lowest contrast stimulus, indicating that 

their true threshold lies above the indicated point. 

 

We also tested three human subjects (2 authors and 1 additional adult female). We used the same 

apparatus and stimuli as with the orangutans, illuminated by overhead lighting adjusted so that the stimulus 

luminance matched that of the zoo stimuli (20 cd/m2). Procedures were identical to those reported above 

except food reinforcement was omitted. Two of the three humans performed perfectly at all SFs and 

contrasts at 57cm and the third made errors only at 15 c/deg and the lowest contrast. Because thresholds 

could not be assessed under these conditions, two subjects were also tested at 114 cm and at 171 cm, which 

increased the range of high SFs tested to include 20, 30 and 45 c/deg. Because the subjects had 100% correct 

performance for all SFs below 15 c/deg at all test distances, we could not estimate the location of the peak 

sensitivity or fit a meaningful function to the data. However, based only on thresholds at 20, 30 and 45 

c/deg, which are plotted in Figure 4b, it was clear the cutoff (CS = 1) for one individual would fall between 

30 and 45 c/deg whereas the other would fall above 45 c/deg. This confirms that our procedures produce 

comparable high SF contrast thresholds to those produced in more traditional human psychophysical setups 

(Campbell & Robson, 1968; De Valois et al., 1974).  
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Discussion 

 

The CSF as a description of the spatial sensitivity of the visual system is characterized by its overall 

height, the position of its peak along the spatial frequency axis, and its cutoff frequency, the SF beyond 

which the stimulus pattern is not resolvable even at maximum contrast (CS = 1). In the present study, we 

have shown that the CSF of orangutans is generally similar to that of other species studied in terms of shape 

(Uhlrich et al., 1981), and its peak (2 – 3 c/deg) falls at the low end of the range reported for similar 

luminance conditions in primates (see Table 1). However, overall sensitivity is – at least under our test 

conditions – considerably lower than that reported for diurnal haplorhines tested in laboratory conditions 

(Table 1), and extrapolated cutoff spatial frequency (visual acuity) was found to be between 13 and 20 c/deg 

in the orangutans, again lower by a factor of three than the best estimates in humans and macaques (45 – 

60 c/deg). It is possible that this indicates a marked divergence of orangutan spatial vision from that of 

other great apes, and given its very separate evolutionary history, its more arboreal lifestyle, and the extreme 

lack of existing documentation of the anatomical and physiological properties of its visual system, this 

possibility cannot be ruled out. However, it seems more likely that the differences can be explained more 

simply in terms of aspects of the test conditions. In humans and macaques, a wide range of stimulus and 

subject variables have been shown to affect both the overall level of sensitivity and the location of the peak 

of the CSF (e.g., luminance: De Valois et al., 1974; stimulus size: Campbell & Robson, 1968; subject age: 

Arundale, 1978; Boothe et al., 1988). 

 

Comparison to Chimpanzees 

 

The only prior CSF measurement in a non-human great ape is the study of chimpanzees reported 

by Matsuno and Tomonaga (2006a). They collected data at five spatial frequencies between 0.5 and 8 c/deg 

using the PEST procedure, an adaptive staircase that generally requires fewer trials to estimate thresholds 

than the staircase used in the present study (Taylor & Creelman, 1967). The function we used to fit our data 

also provided an excellent fit to the chimpanzee thresholds; the chimpanzees displayed greater sensitivity 

at the peak (average peak CS = 128) than the orangutans, but the location of the peak was lower in the 

chimpanzees (average peak = 1.3 c/deg vs 2.8 c/deg). Importantly, the extrapolated high frequency cut-offs 

in CS were also low, giving acuity estimates (9 – 12 c/deg), which fall below those of the orangutans, and 

far below the acuity measures reported in two chimpanzees by Spence (1934) using diffraction gratings 

(approximately 35 and 60 c/deg in the luminance range tested here), and in one chimpanzee tested by 

Matsuzawa (1990) using a letter matching test (letter acuity = 1.5; equivalent to grating acuity of 45 c/deg). 

Surprisingly, the single human subject in the Matsuno and Tomonaga (2006a) study showed a similar 

pattern of unexpectedly low peak location (1.9 c/deg) and cutoff SF (15.1 c/deg) even though the CS value 

at the peak (155) was in the low-normal human range. In contrast, human participants in our study showed 

performance at higher spatial frequencies that was much better than that of the orangutan subjects and 

predicted cutoff SFs in the normal human range of 35-50 c/deg. This suggests that the height and position 

of the CSF in the Matsuno and Tomonaga (2006a) study may have been affected by some aspect of their 

stimuli impacting human and chimpanzees alike, whereas in our study, the low thresholds are more likely 

due to differences in either motivation or testing procedure for the orangutans. A likely candidate limitation 

in the chimpanzee study is the limited size of the Gabor pattern stimuli. A study of macaques (Macaque 

nemestrina) by Kiorpes and Kiper (1996) with small targets and short stimulus exposures produced very 

similar CSF functions to those reported in the chimpanzees and in orangutans in the present study, despite 

high luminance, and testing procedure otherwise identical to those used in earlier studies from this group. 

 

Possible Contributors to the Lower CSF of the Orangutan  

 

 At the lowest spatial frequency for which we gathered contrast thresholds (2 c/deg), our 

measurements undoubtedly underestimate the true abilities of the two orangutans because they both showed 

ceiling level performance at the lowest contrast stimulus we were able to produce, as did all of the human 
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subjects tested in our apparatus. This was a serious limitation of our hard-copy stimuli as it allows us to say 

with certainty only that threshold contrast at 2 c/deg is considerably better than the lowest contrast we were 

able to present. However, at the higher frequencies, especially 10 and 15 c/deg,, the range of stimulus 

contrasts available was adequate to track threshold performance using our staircase procedure, and when 

we incorporated all test trials into our analysis to calculate 75% correct performance, thresholds changed 

very little at 10 and 15 cycles (see Figure 3). Overall luminance and stimulus size are not likely to account 

for the depressed performance as luminance was in the same range as those reported in Table 1, and our 

stimuli were large, and close to the animals. Viewing distance was quite constant as the orangutans moved 

their eyes right up to the cage mesh. In view of our own observations and details provided in the reports of 

other studies (Cowey & Ellis, 1967; Spence & Fulton, 1936; Tigges, 1963) we speculate that a combination 

of the distracting conditions in the zoo, task difficulty, and fluctuating motivation levels in combination 

with limitations in the amount of data we were able to collect within and across test sessions together 

account for the thresholds we obtained. The orangutans were rewarded with pieces of preferred food; 

however, unlike many earlier primate studies (e.g., Cowey & Ellis, 1967), the orangutans were not food 

deprived. The orangutans were tested in their home enclosures so distractions included view of conspecifics 

and enrichment objects. Other reports of performance in orangutans reflect a similar failure to maintain 

focus and poor performance on simple discriminations (Davis & Markowitz, 1978; Schrauf & Call, 2009) 

and on list learning (Swartz et al., 2007). Other studies of Ramai and Sekali along with other Toronto zoo 

orangutans have shown a similar pattern to slow discrimination acquisition and maintenance performance 

of well under 100% correct (Marsh et al., 2011), including studies on topics that we would expect to elicit 

more intrinsic interest such as picture recognition (Marsh & MacDonald, 2008). It would be interesting in 

light of the present results to filter complex stimuli used in cognitive studies using the high frequency 

attenuation our current results suggest:  this might reveal the aspects of the patterns most salient to 

orangutans. 

The task we used in our study (vertical vs horizontal orientation discrimination), which has been 

used in other acuity measures (Ordy & Samorajski, 1968; Treff, 1967; Veilleux & Kirk, 2009), provides 

better experimental control than the more common stripes versus homogeneous field, but it is more difficult 

for animals to learn and maintain. Whereas the orangutans were extensively over-trained on a range of 

spatial frequencies and contrasts after reaching our learning criterion, they nevertheless showed variable 

performance across days on the staircase threshold assessments, and made mistakes on early trials. The 

staircase itself may also have provoked frustration in the animals, as easy trials occurred only at the 

beginning of a test. Spence and Fulton (1936) commented that one of his chimpanzees hated to make errors 

and would have temper tantrums or stop responding when the task became at all difficult, and the other 

made careless errors throughout leading to a much flatter frequency-of-seeing curve. Tigges (1963) 

similarly reported temper tantrums in a young orangutan when transferred to a more difficult version of a 

grey versus yellow color discrimination. Unfortunately, by the time we became aware of some of the 

shortcomings of the staircase procedure as we had implemented it, we were not able to improve the protocol 

due to lack of continuing access to the orangutans as they were involved in new studies. If such a study 

were repeated, we would recommend changing the testing in the following ways: 1) set a much longer 

reversal criterion – for example test until 12 reversals had occurred and average only the last 8, 2) insert 

occasional much easier “reminder” trials into the staircase procedure to reduce frustration, and 3) run 

several additional days of staircase testing so that the first 1 – 2 days could be treated as practice and not 

included in final threshold calculations. Even with these changes, we doubt that thresholds in the orangutans 

would have been improved to the level reported in laboratory testing of diurnal primates, as too many other 

factors can impact performance in the zoo setting. 

 

Future Questions and Conclusions 

 

The present study provides a first look at spatial vision in Sumatran orangutans. We hope that future 

studies will examine other visual abilities of orangutan, particularly visual motion and depth perception, as 

these are skills critical to arboreal survival. A comparison of CSF across primate species and ecological 
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niches would also be a valuable next step. CSF has been measured in only a handful of primate species, the 

majority of which are habitat generalists, making ecological hypotheses difficult (Table 1). Future research 

could compare CSF across diverse primate species, in particular across diurnal/nocturnal niche, 

phylogenetic branches, and habitat. Comparisons across mammals, birds, and fish have found a similar 

shape of CSF despite differences in acuity and contrast sensitivity (Uhlrich et al., 1981), with birds showing 

high acuity but low contrast sensitivity (Ghim & Hodos, 2006). It would be interesting to examine whether 

this trade-off is observed in primates. In particular, it would be useful to compare the CSF shape, acuity, 

and contrast sensitivity for species specialized to habitats at extremes of light (e.g., a tropical rainforest 

species that encounters only filtered light versus a species that lives exclusively in bright open savanna). 

Our results suggest that the orangutan may not have as sensitive spatial vision as expected from 

considerations of eye size, phylogeny, and niche (Veilleux & Kirk, 2014). However, an answer to the 

question of whether the orangutan spatial vision is truly anomalous will await further behavioral studies, 

and anatomical assessment of the Nyquist limit of the foveal retinal mosaic and the pattern of connections 

between foveal cones and midget ganglion cells, the two main anatomical determinants of human visual 

acuity (Rossi & Roorda, 2010; Williams, 1988). In the meantime, our findings provide a valuable picture 

of the range of visual stimuli that one can be confident will be effective as experimental stimuli and as 

environmental enrichment for the orangutan. 
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