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Abstract – When chimpanzees (and other animals) use tools to pound, crack open, retrieve, soak up, pry apart, 

probe into, and/or dig up other objects (just to name a few of the operations of which they are capable), are these 

actions modulated by higher-order, structural, role-based representations of <weight>, <force>, <shape>, 

<connection> and so forth? We report a study that was designed to shed light on what chimpanzees understand 

about <intrinsic connection> and <transfer of force> between objects. We presented expert tool-using chimpanzees 

with very familiar objects (ropes) in a very familiar testing context (hooking and retrieving an object containing 

food). We investigated whether they could transfer the known operation (hooking and pulling) to two distinct setups 

involving ropes (a looped rope that could effectuate the transfer of force, and a draped length of rope that could 

not⎯unless both ends were grasped at the same time). We show that first-order, perceptually-based relational 

reasoning is both necessary and sufficient to explain not only the impressive pattern of results we did obtain, but any 

possible pattern of results we could have obtained. If correct, any claim that higher-order reasoning is necessary to 

explain the results of such a test would, by definition, be false. More importantly, we show that this is not an 

idiosyncratic limitation of this experiment. Instead, we show that all experimental protocols claiming to assay 

higher-order reasoning in animals rest upon an extremely suspect, and ultimately unprincipled, titration. 

Specifically, researchers implicitly assume that the tasks are perceptually similar enough to what their subjects have 

previously encountered to allow them make sense of the problem, but perceptually different enough that the subjects 

must (somehow) rely upon higher-order reasoning to navigate their way through it. We show why such assumptions 

are false. 
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 For roughly two thousand years, humans have known (or at least strongly suspected) that other 

species make and use tools (Newmyer, 2005), a fact imperfectly mirrored in animal folk tales from 

around the world (Povinelli & Barker, 2019). One of the earliest systematic efforts to collate data on 

animal tool use in both natural and captive settings was conducted by Darwin (1871), whose efforts were 

quickly followed by several experimental investigations of animal tool use and manufacture (e.g., 

Hobhouse, 1915; Klüver, 1933; Köhler, 1925). Köhler's (1925) studies documenting the ability of 

chimpanzees to use boxes, sticks, strings, and other objects as tools, in particular, became widely known. 

In the century that has followed, the interest in animal tool use burgeoned, catapulted forward by Jane 

Goodall's detailed reports of wild chimpanzees using (and making) several distinct kinds of tools (e.g., 

twigs as termite fishing wands, chewed up leaves as sponges, rocks as missiles; van Lawick-Goodall, 
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1968). An impressive list of species, from a wide array of taxonomic groups, are now documented tool 

users and toolmakers, including insects, fish, birds, and mammals, even marine invertebrates (see reviews 

and catalogues by Beck, 1980; Bentley-Condit & Smith, 2010; Mann & Patterson, 2013; Shumaker et al., 

2011). Claims of new species purportedly using tools, as well as new uses of tools by species already 

known for the ability, are regularly reported (e.g., nuthatches: Rutz & Deans, 2018; chimpanzees: Hicks 

et al., 2019; van Leeuwen et al., 2017; puffins: Fayet et al., 2020). Nonetheless, tool use remains rare, 

possibly occurring in less than 1% of all known species (see Hunt et al., 2013). 

 Many reports of animal tool use in the wild contain analyses restricted to a functional level of 

description (what the animals do with tools along with analyses of their ecological and evolutionary 

utility). Such reports often emphasize the flexibility, novelty, or context-dependency of tool use (e.g., 

Boesch & Boesch-Acherman, 2000; Patterson & Mann, 2011; Sanz & Morgan, 2009). An important 

historical shift, however, emerged with Visalberghi's landmark investigations of tool use in captive 

capuchin monkeys (e.g., Visalberghi & Limongelli, 1994; Visalberghi & Trinca, 1989). These 

investigations were aimed at distinguishing the kinds of causal information animals rely upon when using 

tools. Although interest in such representational-level questions had existed since Köhler (1925), and 

probably earlier, Visalberghi's work spawned renewed interest in how tests involving tools could be used 

to probe the causal reasoning of animals. Our own initial work on this topic, Folk Physics for Apes, was 

largely inspired by her work (see Povinelli, 2000). A quarter century later, a large (and growing) group of 

investigators have deployed a large (and growing) tool kit of tool-using tasks with the putative aim of 

distinguishing between the construct of "associative learning" and what researchers variously describe as 

"complex cognition", "the ability to engage in causal reasoning", and/or "the ability to process or 

recognize causal information/regularities/cues", just to mention a few of the phrases used (e.g., Alem et 

al., 2016; Bird & Emery, 2009b; Herrmann et al., 2008; Holzhaider et al., 2008; Horner & Whiten, 2007; 

Jelbert et al., 2014; Martin-Ordas et al., 2008; Mulcahy et al., 2005; Nissani, 2006; Riemer et al., 2014; 

Santos et al., 2005; Seed et al., 2009; Taylor et al., 2009, 2010; Visalberghi et al., 2009; Weir & Kacelnik, 

2006; Whitt et al., 2009). 

 In an effort to rectify the conflation between functional- and representational-level questions 

surrounding tool use (and other intelligent behaviors) in animals, Penn et al. (2008a) offered their 

relational reinterpretation hypothesis (RRH).1 The RRH provides a representational-level account of the 

functional differences between human and animal cognition by distinguishing between the cognitive 

requirements for first-order, perceptually-based relational reasoning versus higher-order, structural, role-

governed relational reasoning. The model begins with the uncontroversial claim that animals possess rich, 

temporally stable, mental representations of those aspects of the physical (and social) world that are 

evolutionarily and developmentally important to them (i.e., first-order, perceptually-based mental 

representations). Abundant empirical evidence supports the further claim that these representations are 

part of a cognitive architecture that also includes a (weak) form of compositionality (that is, the 

representations can be recombined in innumerable ways that endow organisms with the ability to engage 

in intelligent, goal-directed behavior). New research is regularly published reinforcing these (and related) 

ecumenical premises (e.g., Gruber et al., 2019). By definition, however, first-order, perceptually-based, 

relational reasoning can be analytically distinguished from higher-order, structural, role-based, aspects of 

cognition that humans, at least, manifestly wield. Penn et al. (2008a) identified key aspects of this higher-

order system, including the ability to do all of the following in an explicit, structural manner: (1) to 

represent and keep track of the relations between types (e.g., kinds, classes, roles, variables) and tokens 

(e.g., individuals, instances, fillers, values), (2) to represent structural relations (e.g., hierarchical 

relations), and (3) to represent that certain relations necessarily imply others, independent of domain or 

learning history (for details, see Penn et al., 2008a, p. 123-128). Importantly, these higher-order features 

of human cognition are what allow humans to redescribe perceptually-based categories and relations such 

 
1 An earlier formulation of this idea (simply, the reinterpretation hypothesis), was described in numerous publications from our 

group. The primary concern of the original reinterpretation hypothesis was to marshal resources from evolutionary theory and 

philosophy of mind to ground the possibility that higher-order thinking is unique to humans (e.g., Povinelli & Giambrone, 1999). 
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that they can serve as the fodder for non-perceptually-based categories and relations involving constructs 

such as  <weight>, <mass>, <shape>, <color>, <time>, <force>, <gravity>, <mental states>, etc.2 

 To be sure, animals successfully cope (in varying ways) with the detectable consequences of 

worldly relations that humans, at least, can redescribe via higher-order thinking. But the fact that humans 

can conceive of a variety of observable events under the structural, role-based relation of <gravity>, for 

example, and the fact that animals keep track of (and act upon) the spatial trajectories of unsupported 

objects, in no way implies that animals also represent <gravity>. In summarizing Alan Turing’s greatest 

contribution to the cognitive sciences, Dennett (2009) made this latter point forcefully: “In order to be a 

perfect and beautiful computing machine, it is not requisite to know what arithmetic is” (p. 10061). In 

contrast, and by necessity, higher-order, structural, role-based representations do entail the presence of 

first-order, perceptually-based representations. This, in turn, entails an asymmetric dependency 

relationship between the evidence for two systems: strong evidence for higher-order representations in a 

cognitive system is strong evidence for first-order, perceptual-based representations, but not vice versa. 

The challenge, then, is to determine what kind of evidence warrants a strong inference for the 

presence/operation of the higher-order system. In the case of reasoning about physical objects, it may 

seem tempting to think that certain forms of tool use and tool-making require higher-order reasoning or, 

to put it more directly, that higher-order reasoning is necessary (but not sufficient) for a certain class of 

behaviors involving tools. Our central objective is to explore whether such an inference is warranted 

within the current experimental genre of comparative psychology. 

 In this paper, we report a previously unpublished study with our chimpanzees that built upon their 

previous experiences using ropes as tools (see below). It was conducted eight years after completion of 

the studies reported in Folk Physics for Apes (Povinelli, 2000).3 The study is a variant of what Jacobs and 

Osvath (2015) have described as "[o]ne of the most widely used and well-known experimental paradigms 

in comparative psychology" (p. 89), the so-called string pulling problem. In the most basic version of this 

test, animals are required to pull a string, rope or similar object in order to obtain a reward that is 

otherwise too far away. In an exhaustive review, Jacobs and Osvath trace the task's origins from ancient, 

sensationalistic interest in watching birds (and other animals) pull strings to earn food and water, to its 

use in comparative psychology, first as a measure of the speed of learning in different species, and later as 

a means of exploring sensorimotor intelligence and causal reasoning. They document over 200 studies, 

involving over 160 species, that have deployed "countless methodological variations" of the basic task 

(Jacobs & Osvath, 2015, p. 89). 

 Using a novel variant4 of the rope-pulling problem, we investigated whether our expert tool-using 

chimpanzees could apply knowledge from several known tool operations (including using a hook tool and 

pulling on ropes) to two new operations: (1) using a looped rope to effectuate the transfer of force, and (2) 

using a draped length of rope that could not transfer force, unless both ends were grasped at the same 

time. The second problem, in particular, was of great interest to us. We discuss the results in the context 

of whether this task (or any other existing task) can allow for strong inferences about the presence of 

higher-order, role-based relational reasoning in animals. 

 

 
2 For example, Povinelli (2012) offers an elaborate case-study of how perceptually-based relations involving object size, the 

effort while lifting an object, the deformation that results when one object is set upon another, the sound two objects make when 

they collide, etc., are used as the inputs for a higher-order, structural, role-based reasoning system that keeps track of, and reasons 

over, the higher-order, structural, role-based construct of <weight>. 
3 One reviewer was worried that some readers might suspect that we delayed publication of this manuscript for perverse reasons. 

To any such reader: rest assured we have dozens of unpublished studies that have remained unpublished for a complex 

combination of personal idiosyncrasies (e.g., boredom at repeating oneself) and theoretical concerns. The theoretical concerns are 

fleshed out in Appendix 1. 
4 As a part of a procedure designed to engineer cooperation between pairs of chimpanzees, Melis et al., (2006) fed a rope through 

rings on opposite ends of a long platform so that if an animal pulled one end, the other end would move out of reach of the 

partner, unless the partner pulled at the same time. Although the authors do not state this explicitly (it was not the purpose of their 

study), some of the apes appear to have been individually trained to pull both ends of the rope simultaneously. Again, because it 

was not the focus of their study, no data were reported on how many apes learned this feat, or how rapidly they did so. 
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Method 

 

Subjects, Housing, Previous Experience 

 

 The participants of this study were seven adult chimpanzees (Pan troglodytes), one male, six 

females. All of the apes were born in captivity within a year of each other at the University of Louisiana 

and were raised together in a nursery with other chimpanzees. We selected them to participate in a 

cognitive and behavioral research program (Project Megan) when they were approximately two years of 

age. After they reached the age of four, they were moved to a specialized housing and testing compound 

(see details below) where they lived together in a capacious indoor-outdoor enclosure. The compound 

was enriched with perches, swings, burlap sacks, hay, and a wide variety of other objects and toys. Social 

interactions with each other and their human caretakers were nearly constant throughout the day. At the 

time of the current study, the chimpanzees were between the ages of 19 years, 3 months (19;3) and 20;4. 

Additional details about the rearing and testing histories of these special and beloved chimpanzees can be 

found elsewhere (Povinelli, 2000, 2012). 

For seventeen years prior to this study, these apes had participated in hundreds of cognitive and 

behavioral studies, both published and unpublished. These studies were typically conducted in a 

secondary facility connected to their living compound, consisting of an outdoor waiting area and indoor 

testing unit, which, in turn, was divided into a transparent Lexan enclosure for the chimpanzees and a 

human workspace (see Povinelli, 2000, p. 18). Each chimpanzee had been trained (on request) to leave 

the main compound and enter the waiting area for individual testing. The apes typically remained in the 

outdoor waiting area as experimenters set up trials indoors. An opaque shuttle door connected the outdoor 

waiting area to the indoor testing unit. The shuttle door could be opened remotely, allowing the apes to 

enter and participate from inside their Lexan enclosure. The Lexan divider contained multiple openings 

(hereafter, windows) that allowed the animals to reach through and perform behavioral tasks. 

These chimpanzees had grown highly proficient in using a wide range of tools to accomplish 

tasks involving hooking, poking, pushing, pulling, raking, lifting, opening, sliding, inserting, rolling, 

colliding, crushing, cracking, flipping, hanging, swinging, and other operations. Their expertise spanned a 

broad variety of tool types, the most relevant to the current study being hooks, rakes, and ropes (for 

examples with hooks and rakes, see Povinelli, 2000, Exp. 3-10, 15-16, 19-20, 27; Povinelli & Frey, 2016, 

Exp. 1-2; for examples with ropes see Povinelli, 2000, Exp. 14; Povinelli, 2012, Exp. 15-17; Povinelli & 

O’Neill, 2000, Exp. 1). Given the importance of ropes to the current study, we note that in addition to the 

published experiences detailed above, we also conducted several other unpublished studies involving 

ropes, strings, and hook or hook-like tools. The chimpanzees’ indoor-outdoor compound was also 

permanently fitted with both loops and untied lengths of rope for enrichment purposes. These were used 

daily by the chimpanzees. 

A familiar “request to respond” (or RTR) procedure was used in this study. This procedure 

allowed the apes to enter the test unit, approach a closed window/opening in the Lexan, and touch a small 

target directly above it. In response, an out-of-sight experimenter (who monitored the ape on a video 

screen) remotely opened the window. The purpose of the RTR procedure was two-fold: 1) it gave the 

animals control over when a trial started, and 2) it gave the experimenter an unambiguous signal for when 

to let the apes respond to experimental stimuli. 

Video cameras in the testing unit were fed into a remote control room. Here, all setup and testing 

procedures were monitored live by other experimenters and recorded. All trial configurations and 

methods were double checked and verified via remote intercom before they were implemented. The video 

recordings were used for coding purposes as well as to ensure standard operating procedures were 

followed. Two manuals governed the conduct, recording, data disposition, archiving, and video coding of 

all experiments (Cognitive Evolution Group, 2010a, b). Following our laboratory practices, a full-time 

study director and study review coordinator were assigned to carry out and monitor the conduct of the 

experiment. 
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 The animals had 24 hr access to water and indoor-outdoor housing and were never food deprived 

for the purpose of the studies. Round the clock veterinary care was available if needed. The study was 

approved by the Animal Care and Use Committee of the University of Louisiana and all federal and state 

guidelines for the care and use of animals were far exceeded. 

 

Materials and Procedure 

 

General Design 

 

 The study was designed to compare the performance of the apes in two main conditions using 

rope tools: a looped rope and an untied rope (hereafter, loop and untied rope, respectively; see Figure 1b-

c). The chimpanzees had mastered numerous tasks (see above) that, on the surface, were both 

perceptually and conceptually similar to the loop and untied rope conditions (see details below). The 

materials and configurations used in the current study, however, had never been presented to them. We 

also administered a highly familiar hook tool condition (see below and Figure 1a), to (1) gauge the apes’ 

motivation to participate, and (2) to verify their relative expertise on a condition conceptually (and 

perceptually) similar to the rope conditions. Given the apes’ prior experience with hook tools (see above), 

we elected to offer no pre-training or re-familiarization with them. 

The tool conditions were administered as separate trials, delivered across 12 sessions. The apes 

received 1-2 sessions per day over a 10 day period. The first six sessions consisted of four trials each. The 

first trial was always a hook trial. The remaining three trials included one of each of the following: hook, 

loop and untied rope. We presented these three trial types in a randomized order (using an across-session, 

4-trial counterbalancing constraint). Because the apes made no errors on the hook trials during the first six 

sessions, we eliminated them during the final six sessions, which therefore consisted of two (randomized) 

loop and untied rope trials. Thus, the apes participated in 12 hook trials (two per session across the first 

six sessions), and 12 loop and 12 untied rope trials (one of each per session, across the 12 sessions). 

 

Trial Setup and General Procedure 

 

 Before each trial began, an experimenter positioned an elongated large table (72 x 180 x 60 cm) 

against the Lexan partition (see Figure 1). The table contained a channel extending away from the apes' 

enclosure. A small platform (45 x 25 x 3.5 cm) made from a rectangular block of wood could slide 

through the channel toward the ape. This sliding block contained a vertical peg on the end closest to the 

ape. A food reward (a slice or fruit or its equivalent) was placed into a food cup anchored on the far side 

of the block (see Figure 1a, d). The block was then placed into the channel at the far end of the table, out 

of the apes' reach. Using the tools provided, the apes could drag the block toward them. The apes had 

mastered a very similar procedure in the past, including a study using the same table apparatus and hook-

like rakes (see Povinelli & Frey, 2016, Exp. 1-2). 

 The apes had access to two response windows. A main response window (which could be 

remotely opened or closed) allowed the apes to reach onto the table and manipulate the tools that were 

provided. A secondary response window near the far wall (away from the table) remained open and was 

used only during the loop and untied rope trials. This window allowed the apes to pass the rope tools 

(which were initially located in their enclosure) to the experimenter when he requested them (see details 

below). 
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Figure 1  

 

Testing Configurations for the (a) Hook, (b) Loop and (c) Untied Conditions, and (d) Megan Using the Hook Tool to Retrieve the 

Sliding Block by Placing the Crooked End around the Post 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note.  The visible food cup in (a) and (d) was also attached to the sliding block in (b) and (c). Figures redrawn from photographs 

(a-c) and still video (d) by DJP. 

 

Procedures for the Testing Conditions 

  

Hook tool. As the apes waited outdoors, the experimenter baited the food cup and placed a 60 cm 

long hook tool in the channel with the handle end within easy reach (see Figure 1a). The trial began as the 

experimenter concealed himself in a small booth at the rear of the test unit and opened the shuttle door. 

As soon as the apes entered, the shuttle door closed behind them. For these trials, the main window was 

already open, allowing immediate access to the hook and apparatus. When the ape first touched the hook 

tool, secondary experimenters (located in a remote control room) started a 30 s timer. During this time 

period, the apes were allowed to manipulate the tool in any manner they chose. As soon as the ape 

obtained the reward, or after 30 s had elapsed, the main experimenter began to lower the response 

window, signaling the end of the trial. The shuttle door was then opened and the ape returned to the 

outdoor waiting area. 

 Looped rope. For loop trials, the experimenter set up the table as described above. Instead of 

placing a hook tool on the table, however, a 175 cm length of rope that had been tied into a loop was 
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draped on the inside wall of the apes’ test unit (see Figure 2a). After the ape entered the room, the 

experimenter emerged from the booth and, using gestures and speech, requested the rope. The apes 

readily removed the rope from the wall and passed it through the secondary window to the main 

experimenter who collected it, draped it around the peg of the block, and oriented the rope so that it was 

in a standardized position within reach of the apes (Figure 1b). The experimenter was careful to maintain 

the apes' attention throughout this procedure. Once finished, the experimenter returned to the booth. As 

soon as the ape touched the RTR symbol, the experimenter remotely opened the response window, and 

the trial began. The apes were able to manipulate the loop in any manner they chose until the trial ended 

(following the 30-second decision rule described above). 

 
Figure 2 

 

The Presentation of the (a) Loop and (b) Untied Rope Tools  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The ropes were inside the apes’ portion of the testing unit when they entered and were handed to the experimenter by the 

apes as he requested them. This allowed the apes additional visual and tactile experiences of their properties before they watched 

him lay them into position as shown in Figure 1b and c. Figures redrawn from photographs by DJP. 

 

 Untied rope. The procedure for the untied rope trials was the same as loop trials, except that 

instead of the rope being tied into a loop, an untied rope of the same overall length was draped on the wall 

(see Figure 2b). Once the experimenter received the untied rope from the ape, he draped it around the peg 

and placed the two ends on the table nearest the apes in a standardized position. The ends were not 

touching and were equidistant from the peg on the sliding block. 

 The difference in how the tools were presented in the hook case (window open and tool already in 

place) versus the two rope conditions (ropes draped inside the apes' enclosure) was due to the use of the 

hook condition as a general procedure to ensure the apes were motivated to perform a retrieval task on 

which they had repeatedly demonstrated mastery. We were not interested in using the results of the hook 

condition to assist in licensing specific inferences about the apes’ cognitive systems. Any such inferences 

were to be generated on performance comparisons between the tied and untied rope conditions.  

 

Video Coding and Reliability 

 

All trials were recorded on video for later coding of the apes’ behavior by trained observers. 

Cameras were positioned on the ceiling and wall of the testing unit and were controlled by the 

experimenters in the remote control room. The cameras provided a full visual of the table, apparatus and 

tools used, and the apes' behavior (Figure 1c). 
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A primary rater coded all trials using a set of standardized written instructions, and a secondary 

rater independently coded 25% of the sample (the first three sessions for all 7 animals).5 For hook tool 

trials, the raters recorded if the apes successfully used the hook to drag the sliding block to within reach 

and obtained the reward. For the main conditions (loop and untied rope), the raters again recorded if the 

ape was successful. In addition, they recorded which of two actions the apes deployed to try to get the 

reward: (1) grasping one length of the rope or (2) grasping both lengths of the rope. For this measure, the 

raters recorded both the apes' initial and final actions on the ropes. Separate actions by the apes were 

defined as completely releasing the rope, or by changing his or her behavior (e.g., pulling one length, and 

then, without releasing it, grabbing the second length). If the apes were successful using their first action, 

then the raters recorded their first action as their final action as well. 

The raters displayed perfect agreement on their judgments of success for hook trials (40/40 = 

100% agreement, Cohen's κ = undefined), as well as loop and untied rope trials (40/40 cases of 

agreement, Cohens’ κ = undefined). For the category of initial action, there was one disagreement (39/40, 

Cohen’s κ = .918). For final action, there were two disagreements (38/40, Cohen’s κ = .90). The study 

review coordinator resolved the three cases of disagreement by observing the trial with the primary rater. 

The resolved judgments were used in the data analysis. 

 

Results 

 

Our description of the results proceeds in three steps. First, we examine the apes’ level of success 

(obtaining the reward or not) on the hook, loop, and untied rope trials. Next, we examine how the apes 

adjusted their specific actions on the loop and untied rope tools (pulling one or both lengths of rope) both 

within and across trials. Finally, we compare and contrast the performances of individual apes. 

 

Overall Success 

 

Figure 3 depicts the apes' averaged success in the hook, loop and untied rope trials in blocks of 

two sessions. This equates to blocks of 4 trials for the hook condition, and 2 trials for the loop and untied 

rope conditions. (Trial-by-trial data for the individual apes is provided in Table 1 and is discussed below.) 

On hook trials, the apes were 100% successful in using the tool to obtain the reward (Figure 3). 

The apes typically entered the testing unit, proceeded directly to the testing table (recall that the window 

was already open and the hook tool was resting on the table), picked up the hook tool, extended it toward 

the baited sliding block, and oriented the crooked end around the post. From there, they easily dragged the 

block toward them and retrieved the reward. There were, however, idiosyncratic differences among the 

apes in the manner in which they maneuvered the crooked end of the tool to the peg (see discussion in 

Povinelli, 2000, p. 220-221). 

Similar to the hook trials, the apes were successful on every loop trial (Figure 3). They achieved 

success by grasping either one or both lengths of the rope and pulling the platform within reach. In 

marked contrast, the apes' averaged success level on the untied rope trials was low and variable across the 

first two blocks of trials/sessions. Two of the seven apes (28.6%) were successful on trial one (Jadine, 

Mindy), and one of the seven (14.3%) was successful on trial two (Kara). Beginning with the second 

block of trials/sessions, however, the apes' success improved quickly, stabilizing at 75% success or higher 

(see Figure 3). A more fine-grained examination of the trial-by-trial data of the individual apes revealed 

that the majority of them (4/7, 57.1%) improved most between trials 3 and 4 (see also Individual 

Performances, below). The trial-by-trial data also reveal that most of the variability was due to the 

relatively lower success levels achieved by Megan and Mindy. 

 
5 We planned the reliability analysis to be based upon 42 hook trials (3 sessions x 2 trials x 7 animals) and 42 loop and untied 

trials, combined (3 sessions x 2 trials x 7 animals). Due to a video recording error, however, raters were unable to extract data 

from trials 2-4 of Jadine's third session. The final reliability analysis was therefore based on 40 hook trials and 40 loop and untied 

rope trials. 
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Figure 3 

 

Mean Percent of Trials (± SEM) in which the Apes were Successful in Retrieving the Food Reward from the Sliding Platform in 

Blocks of Two Sessions for Hook, Loop and Untied Conditions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The apes received one trial of the loop and untied rope conditions per session, so the individual data points for these 

conditions are the average of two trials. Because the apes received two trials per session of the hook condition, individual data 

points for this condition represent the average of four trials per block of two sessions. Hook trials were discontinued after session 

6 (see text for details). Data points for hook and loop conditions have been offset for visibility. 

 

Behavioral Adjustments Within and Across Trials 

 

Figure 4a depicts the average percent of trials in which the apes' initial actions were to grasp both 

lengths of rope. These data reveal a similar pattern in the loop and untied rope conditions. In the untied 

rope condition, there were only two instances in the first block of trials/sessions (one on the first trial and 

one on the second) in which an ape’s initial action was to grasp both lengths of rope. Thus, for the 

majority of cases in the first two sessions, when confronted with the untied rope condition, the apes 

initially grasped one end of the rope. They proceeded to pull it, watching as the other end slowly traveled 

out of reach and snaked around the peg, thus making it impossible to obtain the reward. In the first few 

sessions, the apes also preferred to initially grasp one length of rope in the loop trials. 

Figure 4b presents the apes' final actions in the two conditions across trials/sessions, and reveals 

how, as the experiment proceeded, their final actions changed from grasping one end to grasping both 

lengths/ends. This occurred in both conditions although this shift may have occurred slightly faster in the 

untied condition. Importantly, the trial-by-trial data (see Table 1) revealed there was an inflection point 

for the majority of the apes after trial 3 that characterized the shift from initially grasping one length of 

rope, to grasping both. As can be seen by comparing Figure 4a and 4b, this occurred in parallel in both 

conditions (see Individual Patterns, below). 
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Table 1 

Trial-By-Trial Data for the Number of Lengths of Rope That Were Initially and Finally Grasped by the Chimpanzees in the Loop 

and Untied Rope Conditions 

       Trial number      

  1 2 3 4 5 6 7 8 9 10 11 12 

Apollo              

 loop 1,2a 1,2 1,2 1,2, 2,1 1,2 2,2 2,2 2,2 2,2 2,2 2,2 

 untied 1,1 1,1 2,2 2,2 1,1 2,2 2,2 1,2 2,2 1,2 2,2 1,2 

Kara              

 loop 2,2 1,1 2,2 2,2 2,1 2,2 2,1 2,2 2,2 2,2 2,1 2,2 

 untied 1,1 2,2 1,1 2,2 2,2 2,2 2,2 2,2 2,2 2,1 2,2 2,2 

Candy              

 loop 1,2 1,2 1,2 2,2 1,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

 untied 1,1 1,1 1,2 1,1 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

Jadine              

 loop 1,2 1,1 --b 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

 untied 1,2 1,1 --b 2,2 1,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

Brandy              

 loop 1,1 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

 untied 1,1 1,1 1,1 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 

Megan              

 loop 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 

 untied 1,1 1,1 1,1 2,2 2,2 2,2 1,1 2,1 1,1 2,2 1,2 2,1 

Mindy              

 loop 1,1 1,1 1,1 1,1 1,2 1,1 1,1 1,1 2,2 2,2 2,2 2,2 

 untied 2,2 1,1 1,2 1,1 1,1 1,1 1,1 1,1 2,2 2,2 2,2 1,1 
 

Note. a 1=ape grasped one length of rope, 2=ape grasped both lengths of rope. The first value in each series indicates the ape’s initial choice, the 

second value indicates the ape’s final choice.  
b This trial is missing due to a video recording error (see footnote 3, main text). 

 

Figure 4 

 

The Mean Percent of Trials (± SEM) in which the Apes’ (a) Initial and (b) Final Actions on the Ropes Involved Grasping Both 

Lengths of Rope, Depicted by Condition 
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 Figure 5a illustrates the apes' initial versus final actions in the loop trials. It is apparent that, in the 

first 2-3 blocks of trials/sessions, the apes executed considerable within-trials adjustments in the direction 

of initially grasping one length of rope to grasping both. Figure 5a also reveals that, across trials, most of 

the apes also shifted their initial actions to prefer immediately grasping both lengths of rope. The fact that 

it was not necessary to do so is evident from the fact that, even in the final loop trials, some apes 

occasionally grasped only one length of rope, yet they were still always successful. These within- and 

across-trial adjustments in the loop condition likely reflect the fact that, depending on the exact trajectory 

of their pulling motion, the initial action of pulling one length of rope did not always move the block as 

the loop circled around the peg. This was followed by many occasions in which the apes leaned or 

stepped backwards (while still holding only one length of the rope), until the loop became taut and the 

food reward moved toward them. This involved extra effort, and there were a number of occasions in 

which the apes began switching to two hands within a trial, before adopting the easier solution of simply 

initially grasping both lengths of rope (see Individual Patterns below). 

 
Figure 5 

 

The Mean Percent of Trials (± SEM) in Which the Apes’ Initial and Final Actions Involved Grasping Both Lengths of Rope, in 

the (a) Loop and (b) Untied Condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b illustrates the apes' initial versus final actions during the untied rope trials. The within- 

and across-trial pattern reflects the much tighter causal constraint that the task imposed upon the apes' 

initial actions: pulling a single end of the untied rope generally made the task unsolvable. As described 

above, the apes began by almost never initially grasping both ends of the rope, to almost always doing so, 
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and as can be seen in Figure 5b, this change was most marked during the first 2-3 blocks of trials/sessions 

(the first 3-4 trials). The majority of cases, but not all of them, were in the direction of shifting from 

grasping one length to two (see below). Notably, there was only a single instance in the first two sessions 

(14 trials) of this condition (Jadine, trial 1), where an ape adjusted his or her behavior within a trial in the 

direction of grasping one to both ends of the rope, before it was too late. 

Next, we examine the co-development of the initial action of grasping both lengths of rope in the 

two conditions across sessions. Figure 6 is a plot of the average percentage of sessions (in blocks of two 

sessions) in which the apes' initial actions in both the loop and the untied rope within a session involved 

grasping both lengths of rope (in other words, performing the same initial action for both trial types in a 

session). These data exclude Megan, who never grasped both lengths of rope in the loop condition (see 

Table 1). The apes shifted from never grasping both lengths of rope as their initial action on both trial 

types within a session, to doing so around 80% of the time. 

 
Figure 6 

 

The Mean Percent of Trials (±SEM) in which the Apes’ Initial Actions (Within Each Sessions) for Both the Loop and Untied Rope 

Trials were to Grasp Both Lengths of Rope  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. These data show how, over time, as a group, the apes converged on the same initial action of grasping both lengths of rope, 

regardless of condition. (NB: Megan’s data are not included in this graph because in the loop condition her initial action never 

involved grasping both lengths of rope.) 

 

Individual Patterns 

 

 An exploration of the individual behavioral patterns of our apes (see Table 1) provides important 

context to the findings described above. Although the apes were 100% successful in the loop condition, 

their routes to success varied. For example, the apes changed how many lengths of rope they grasped 

during 16.8% (14/83) of the loop trials, and 71.4% (10/14) of these adjustments were in the direction of 

grasping one length of the rope to both. Apollo, Kara and Candy, in particular, continued to adjust how 

many lengths of rope they pulled in the loop condition throughout the course of the experiment, whereas 

the remaining apes exhibited very few within-trial adjustments (see Table 1). As described above, it was 

our impression that the within-session adjustments occurred because the sliding block frequently did not 

initially move when the apes pulled only one length of the loop. 
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 In the untied condition, the apes adjusted how many lengths of rope they grasped in 13.2% 

(11/83) of the trials. As was the case for the loop trials, where the majority (72.7%, 8/11) of the 

adjustments were in the direction of grasping one end of the rope to grasping both. There were three 

notable trials, however, where Megan (twice) and Kara (once) switched from grasping both ends of the 

rope, to then grasping only one, resulting in failure. Table 1 reveals how, in the untied condition, four of 

the apes (Kara, Candy, Jadine, Brandy) developed a successful initial approach to the untied rope 

condition within the first several trials. The remaining three apes (Apollo, Mindy, Megan) never appeared 

to do so reliably, each initially grasping both ends of the rope only 50% of time across the second half of 

the trials (trials 7-12). Of these three, only Apollo was able to learn to successfully adjust his behavior 

within trials, changing from grasping one end of the rope to grasping both ends. This occurred on three of 

his final six trials and allowed him to achieve 100% success in the second half of the experiment. 

 

Discussion 

 

 We were impressed by the performance of our apes. First, they demonstrated a long-term 

retention of a skilled form of tool-use involving hooking an out-of-reach object. Second, they performed 

flawlessly when confronted with a new tool (the looped rope). Third, and most importantly, most of them 

quickly mastered a new problem involving the untied rope. Admittedly, the rate of skill development with 

the untied rope tool varied. Nonetheless, five of the seven apes (71.4%) cemented their skill on this tricky 

task within the first three trials. Thus, by trial 4, these five apes had learned to either immediately grasp 

both ends of the rope, or (in the case of Apollo) when they did not, learned to appropriately adjust their 

behavior before pulling the other end out of reach. Two of the apes (Megan and Mindy) "performed 

poorer" and "learned slower." Do these results necessitate the operation of higher-order, structural, role-

based relational reasoning? 

 To begin, given the pre-existing competence of this particular group of chimpanzees, it is not 

surprising that their ability to use a hook tool would persist over time. The hard-won expertise of tool-

using chimpanzees living in the wild is instructive. After young chimpanzees master a task like termite-

fishing or cracking nuts, it is inconceivable they would lose this expertise over a matter of weeks, months, 

or even years of not having the opportunity to exercise it (see Boesch & Boesch-Achermann, 2000; 

Goodall, 1986). To wit, there are numerous reports of tool-related skills persisting in captive chimpanzees 

(and other animals) over long periods of time (Beck, 1980). Nonetheless, we suspect few psychologists 

would accept the mastery and long-term retention of using a hook tool (or a termite wand) as evidence 

that the animal in question possesses higher-order, role-based relational representations involving 

constructs like <rigidity>, <connection> and/or <force>. Why not? A typical objection would be that the 

animal could have learned the relations in question (how to use the tools) without the mediated influence 

of such higher-order representations, and like other perceptually-based representations, these learned 

skills could be encoded in long-term memory to be deployed as needed.  

 To rephrase all of this in the language of the broader argument we are building, this objection can 

be recast more formally: evidence of a particular first-order, perceptually-based relational ability (whether 

acquired via learning or evolutionarily endowed), is necessary but not sufficient evidence of higher-order, 

structural, role-based relational reasoning. Indeed, in the case of mastering the use of a hook to retrieve an 

out-of-reach banana (or fashioning twig-like probes to extract termites from a mound), scholars can 

always point to the extensive learning histories that precede competence (see, for example, data on the 

ontogeny of nut-cracking skills of chimpanzees in Boesch & Boesch-Acherman, 2000). Ultimately, such 

arguments depend on the assumption that such learning histories cripple our ability to discern if the skill 

is mediated by first-order, perceptually-based, relational reasoning alone, or whether higher-order 

relational reasoning also modulates the behavior. (We write the words "also modulates" with great care 

because, as we noted earlier, a mental system that wields higher-order representations must necessarily 

wield first-order, perceptually-based ones as well. Even human reasoning, no matter how high its highest-

order relations reach, are ultimately dependent upon perceptually-based relations; see Penn et al., 2008a; 

Povinelli, 2012.) 
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 The phrase "associative learning" is frequently invoked to capture this alternative explanation, 

both in the context of tool-use and other domains of cognition (e.g., Seed et al., 2009). Unfortunately, 

terms such as "associative learning" or "causal understanding" obscure crucial questions concerning one’s 

commitments regarding an animal's cognitive architecture, and are therefore too broad to assess a 

principled theory of the kinds of representations that are necessary and sufficient for learning how to use 

and manufacture tools, or how the long-term retention of these skills tools relates to alternative models of 

mental structures. Such terminology also frequently obscures the sources of learning in tasks periodically 

heralded as breakthroughs in the understanding of animal cognition (e.g., Ghirlanda & Lind, 2017; 

Hennefield et al., 2018). 

 In response to these intuitively-based concerns, experimentally-minded psychologists and 

philosophers have therefore reasoned that more diagnostic tests should be invented and administered. We 

include our former selves in this category (see the appendix; see also Barker & Povinelli, 2019). The hope 

was (or is) that empirical results from new task variants would (or will) have the power to distinguish 

between organisms who solely rely upon intelligent first-order, perceptually-based relational reasoning, 

and those that also possess higher-order, structural, role-based relational reasoning (see Penn et al., 

2008a). In the case of the rakes and hook tools, putative examples of such probative variants abound (e.g., 

chimpanzees: Povinelli, 2000, Exp. 3-10, 15-16, 19-20, 27; Povinelli & Frey 2016, Exp. 1-2; great apes: 

Martin-Ordas et al., 2008; cotton-top tamarins: Santos et al., 2005; crows: Bird & Emery, 2009a; Hunt & 

Gray, 2004; St Clair & Rutz, 2013; Weir et al., 2002). 

 As we explore further below, however, every task must possess its own perceptual grounding. 

Hence, any concern that an organism's learning history can fatally contaminate experimental tasks⎯and 

thus block (or, at the very least, undermine) strong inferences about the operation of higher-order 

relational reasoning⎯must, by extension, apply to any new task (or its future variants) as well. In 

response to this concern, the rate of learning exhibited by an animal is frequently invoked as somehow 

relevant, with special emphasis placed on trial one, in particular (we, too, once invoked such emphasis: 

see Barker & Povinelli, 2019; Povinelli, 1988). However, using an animal's excellent performance on trial 

one (or two or three) as adjudicating evidence in favor of the operation of higher-order reasoning rests 

upon an extremely suspect, and ultimately unprincipled, titration: namely, that the problem instantiated by 

the task is perceptually similar enough to things that the animals have previously encountered to allow 

them to make sense of it, but perceptually different enough that they must rely upon higher-order 

reasoning to navigate their way through it.6 It should be noted that this already daunting problem of 

perceptual grounding is dramatically magnified when one considers the evolutionary histories that have 

sculpted a given species' unique constellation of sensitivities to innumerable perceptually-based relations 

(see Clark & Thornton, 1997; Povinelli & Penn, 2011). 

 Consider the untied rope condition, which was originally conceived of as a possible method for 

assaying our apes' level of causal reasoning. In particular, let us contrast the animals who performed 

"poorly" or "learned slowly" (we paranomastically applied these epithets to Megan and Mindy earlier) 

versus those that performed "excellently" or "learned rapidly" (more laudatory terms we applied to the 

performances of our other apes). In the case of Mindy and Megan, one can readily enumerate many 

reasons why their performances do not seem impressive from the point of view of higher-order 

reasoning.7 What is less often considered is why the performances of the more accomplished animals 
 

6 If it turns out that humans are alone in having evolved higher-order, structural, role-based relational reasoning, and this system's 

primary initial function was to reinterpret the already highly intelligent outputs of first-order, perceptually-based systems, then 

attempting such titrations might prove to be not only methodologically unprincipled, but also a fool's quest (see Bering & 

Povinelli, 2003). 
7 Only one of our animals (Mindy) performed perfectly on trial one of the untied rope condition and she did not continue to 

exhibit this behavior. Does this warrant the inference that our apes did not engage in higher-order causal diagnostic reasoning as 

they handed the rope to the experimenter and watched him drape it around the peg? We have discussed the scientific folklore 

surrounding the idea of trial one elsewhere (e.g., Barker & Povinelli, 2019; Povinelli, 2012). Here, we simply emphasize that this 

question is distinct from whether animals possess, but in certain circumstances do not exercise, any higher-order capacities they 

may have. In various guises, this latter problem has appeared and reappeared throughout the history of comparative psychology, 

including in the case of the string-pulling problem. In assessing the results of more than a century of research on this topic, 
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cannot be attributed solely to the operation of first-order, relational reasoning (for an outstanding 

dissection of this problem in the case of temporal cognition and planning in animals, see Hoerl & 

McCormack, 2019). 

 Nonetheless, at a functional level of description, it is certainly true that the majority of our apes 

rapidly developed from failing to compensate for the objective (causal) fact that pulling on end of the 

untied rope would not transfer sufficient force to the peg (and thus produce no useful work), to doing so 

reliably. Could the rapidity of this learning be used to construct an argument in favor of the presence of 

higher-order representations? One such (inductive) argument (with two premises and a conclusion) 

proceeds as follows: 

 

P1 In order to master the skill of using the untied rope, the apes needed to keep track of how 

their actions on one end of the rope, caused the other end to move away from them.8 

P2 Learning to grasp both ends of the rope after only two or three opportunities of 

experiencing the mechanics of the system is evidence that they understood that the rope 

needed to tighten around the peg in order for the sliding block to move toward them. 

C To fully explain the observed pattern of results, we must appeal to higher-order relational 

reasoning involving constructs like <transfer of force> (or, more technically, higher-

order reasoning is necessary, though not sufficient, to fully explain the observed pattern 

of results.)  

 

Clearly, however, P2 must be wedded to some other, background theory about why the two systems under 

consideration differ in the rates of learning they can achieve, and how any such differences articulate to a 

specific, situated task. We know of no such theory. Indeed, as we elaborate below, the asymmetric 

dependency relation between first- and higher-order representations leads us to conclude that no such 

theory can be derived from the current representationalist theories of cognition in which these tasks are 

situated. In the absence of such a background theory, keeping track of the relevant first-order perceptual 

relations would seem necessary and sufficient to produce the actions described: <pull one length of rope, 

no movement of block; pull two lengths of rope, block moves>. By obvious extension, if first-order 

relational reasoning is both necessary and sufficient, then higher-order relational reasoning has no role to 

play in explaining the results. 

 A related (but typically overlooked) point concerns how many relevant learning units an animal 

experiences prior to mastery. Following the folk scientific practices of comparative psychology, we 

experimentally divided our experiment into "trials." But what we define as a single trial may not 

accurately map onto the learning machinery of our chimpanzees. As Apollo pulls on one end of the untied 

rope, what is the relevant unit of learning? The other end of the rope traveling just out of reach? The end 

snaking off the peg? The experimenter lowering the response window as time expires? If learning occurs 

continuously throughout rope movement, however, then our idea of a "trial" becomes highly 

misleading⎯at least with respect to using it as an objective measure of a real unit of learning. By 

consequence, invoking the number of trials to mastery as evidence in favor of higher-order relational 

reasoning is substantially weakened. Elsewhere, we have empirically and analytically exposed the 

 
Jacobs and Osvath (2015) note, for example: "Older animals often perform better because they are more cognitively developed 

and less playful . . . although juveniles might be more successful because they can be more persistent" (p. 92). 
8 For now, we set aside the problem of whether the shift to grasping both lengths of rope became an inevitable embodied act once 

it became apparent that grasping one length did not result in the block moving. We suspect, however, that in certain quarters of 

cognitive science this explanation would have many adherents (for example, see Barrett, 2011; Fragaszy & Mangalam, 2020.) 

After all, these data show how the apes converged on a simple solution to this task, regardless of condition: <grasp both lengths 

of rope, pull>. Properly understood, this would apply even to Apollo's actions, described earlier. (An even more deflationary idea 

was suggested by one our reviewers who suggested that perhaps the apes simply grabbed the second length or rope as it was 

moving away simply because they wanted “more rope”, and thus perhaps never understood the causal necessity of doing so. We 

neither endorse nor reject this possibility.) 
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damaging implications of ignoring this problem (Barker & Povinelli, 2019; Hennefield et al. 2018). Note 

that this difficulty is distinct from both the perceptual grounding and rate of learning challenges described 

earlier. 

 Certain scholars have attempted to counter these arguments deploying one or more of three 

(related) arguments, each of which is fatally flawed: 

 

(1)  Some scholars argue that our explanations are ad hoc (for a seminal statement of this 

view, see Tomasello & Call, 2006). Alas, such objections directly fail to address the full 

import of the asymmetric dependency problem. And so, by extension, they fail to address 

what we have (re)stressed here: the claim that first-order representations are necessary 

and sufficient to account for the results of such tests systematically applies in all cases of 

this type, including new cases yet to be articulated. 

(2)  Scholars also argue that the explanation above is "less parsimonious" than the higher-

order alternative. Once again, this argument is defeated by the asymmetric dependency 

relationship: a higher-order system entails the operation of its lower-order components, 

but not vice versa (for a detailed explication of this asymmetry in the context of social 

reasoning, see Povinelli & Vonk, 2004). And if the first-order components are necessary 

and sufficient to obtain the results, it cannot be less parsimonious (in the straightforward 

sense of positing more variables to account for the same observations). Indeed, the 

reverse would seem to hold. (For more detailed discussions and other interpretations of 

the parsimony question and how it relates to the case of higher-order reasoning about 

mental states, see Andrews, 2016; Clatterbuck, 2018; Dacey, 2016; Sober, 2016a.)  

(3)  Finally, scholars also argue that it is "more plausible" to assume the presence of the 

higher-order system, especially given what are often described as the "growing bodies of 

evidence" in support of higher-order interpretations. But this reasoning is fatally circular. 

Unless one can first produce some independent evidence for either (a) the limits of the 

causal power of the first-order, perceptually-based reasoning, and/or (b) the unique causal 

power of the additional, higher-order system, then there is no way to assess the relative 

plausibility of the two alternatives.9 By "independent evidence" we directly exclude 

evidence derived from the experimenter's intuitions or folk ideas about how their own (or 

other) minds reason about the world (see Povinelli & Giambrone, 1999). Thus, the 

"growing bodies of evidence" should be restated as "growing bodies of utterly 

indeterminate evidence." In the appendix, we suggest how (a) and (b) could become a 

focal point for future research. 

 

The above considerations suggest a different way of relating to our subjective feelings of being 

"impressed" by our apes. Our analysis suggests that uncontroversial tenets of representational theories of 

cognition urge us to be impressed by the causal power of first-order, perceptually-based, relational 

reasoning. Until such a time as we develop a principled account of the additional causal work that higher-

order, role-based relational reasoning may contribute to such results, we have no business invoking it to 

explain them. This leads us to an additional question: Is there any (hypothetical) pattern of results in this 

experiment that could ground a strong inference in favor of the operation of the higher-order system? The 

answer is now obvious: no. Even flawless performance from trial one forward would suffer from the 

perceptual grounding issue described above.  

For those who remain unsettled and/or unconvinced, and are thus understandably tempted to think 

that additional, cleverly-designed task variants can overcome this conceptual problem, it is worth noting 

 
9 One might be tempted to think that evolutionary considerations (such as the degree of phylogenetic relatedness of two species) 

might help to adjudicate which alternative is more or less parsimonious or plausible (see Sober, 2012). However, these arguments 

quickly become problematic because the answers depend on unproven assumptions about (1) when the higher-order systems 

evolved in relation to the first-order systems, and/or (2) the precise role they play in modulating targeted aspects of human 

behavior (Povinelli & Giambrone, 1999).  
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that it would be conceptually impossible to conjure a way of presenting an animal with some stimuli 

(such as ropes) in a manner that did not fall under some pre-existing set of perceptual generalization 

gradients, each derived from either its evolutionary or developmental history or, more likely, the complex 

interaction of both. In the present case, our apes possessed nearly twenty years of structured and 

unstructured experiences not just with ropes and strings, but with a host of other materials as well (sticks, 

rakes, hooks, plastic chains, burlap sacks, sheets of cardboard, pull toys, etc.), all falling under robustly 

overlapping perceptual gradients. Given such developmental facts, how could a new, rope-like stimuli not 

connect to these existing representations?10 But even if one could conjure such stimuli, on what basis 

would one then expect the animal to perform well on trial one? 

One narrow interpretation of the foregoing analysis is that tasks involving ropes and strings are 

simply bad choices for experimental attempts aimed at untangling the unique causal signatures of higher-

order role-based relational reasoning. We believe this interpretation radically underestimates the problem 

facing comparative psychology. Properly understood, the asymmetric dependency relationship between 

first-order, perceptually-based reasoning system and the kinds of higher-order, role-based reasoning of 

which humans are manifestly capable, renders an entire genre of historical experimental strategies largely 

unhelpful. An example may suffice to illustrate the broader argument. Schrauf and Call (2011) allowed 

great apes to pull vertical ropes from which opaque containers were hanging (see also, Hanus & Call, 

2011, for a similar approach not involving ropes or strings). Some of the containers were baited with food 

(and were therefore harder to pull) whereas others were empty (and therefore easier to pull). Across trials, 

the apes tended to favor completely pulling in the containers that contained food (that is, the ropes that 

were harder to pull). They did not perform as well when the experimenters used arbitrarily chosen color 

cues to signify which cups were baited. The authors concluded that apes are more sensitive to causal cues 

(i.e., the effort to pull cups loaded with food), than arbitrary ones (a randomly chosen color). We agree. In 

addition to their species' evolutionary histories, these apes had innumerable experiences lifting food and 

other objects (including objects containing food). The effort to lift or pull objects, then, is a prioritized 

causal relation involving a finely-tuned perceptual sensitivity (for some examples with chimpanzees, see 

Povinelli, 2012, Exp. 1-8). Thus, the work of Schrauf and Call should not be interpreted to suggest that an 

organism's evolved perceptual sensitivity to some causal fact about the world is evidence of higher-order 

relational reasoning. Instead, it should be understood as another demonstration of why "associative 

learning" is too broad a concept to be helpful in the debate over whether animals are capable of higher-

order reasoning. No pattern of results from their experimental approach, no matter how many task 

variants are invented, could ever implicate the operation of higher-order reasoning about <weight>. Of 

course, not all perceptual relations deriving from the acceleration of mass in the Earth's gravitational field 

will be equally prioritized by all species. But as Clark and Thornton (1997) have demonstrated more 

generally, organisms must come into the world pre-prepared to learn a host of relations, and thus some 

relations will be easier to learn than others (see Povinelli & Penn, 2011). 

We conclude that no experimental approach that presents physical (or virtual) objects to animals 

(as tools or otherwise), and then measures whether or how quickly they demonstrate mastery of objective 

causal facts about them, will ever allow for strong inferences about the presence of higher-order relational 

reasoning. Our analysis shows that first-order, perceptually-based, relational reasoning is both necessary 

and sufficient for such mastery. If correct, any claims for the necessity of higher-order reasoning to 

explain the results of such tasks are, by definition, false. Whether tasks that fall outside this genre can do 

so remains an open question. 
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10 Povinelli and Vonk (2012) have provided an in-depth case study of this issue in the context of the ability of animals to reason 

about floppy versus rigid tools.  



                                                                        Povinelli & Henley   409 

 

to Caroline Arruda for feedback on an earlier version of this article. The study was supported in part by a 

Centennial Fellowship to D.J.P. from the James S. McDonnell Foundation. We have no conflicts of 

interest to report. We dedicate this effort to the memory of Anthony ("Pop") Rideaux whose loving care 

of the chimpanzees who participated in this study will remain stitched in the hearts of those who knew 

him.  

 

References 

Alem, S., Perry, C. J., Zhu, X., Loukola, O. J., Ingraham, T., Søvik, E., & Chittka, L. (2016). Associative 

mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biology, 

14(10), e1002564. 

Andrews, K. (2016). Snipping or editing? Parsimony in the chimpanzee mind reading debate. Metascience, 25(3), 

377–386. 

Arruda, C. T., & Povinelli, D. J. (2016). Chimps as secret agents. Synthese, 193(7), 2129–2158.  

Barker, K. B. & Povinelli, D. J. (2019). Anthropomorphomania and the rise of the animal mind: A conversation.  

Journal of Folklore Research, 56(1–2), 71–90. 

Barrett, L. (2011). Beyond the brain: How body and environment shape animal and human minds. Princeton 

University Press. 

Beck, B. B. (1980). Animal tool behaviour: The use and manufacture of tools by animals. Garland STPM 

Publishing. 

Bentley-Condit, V. K. & Smith, E. O. (2010). Animal tool use: Current definitions and an updated comprehensive 

catalog. Behaviour, 147(2), 185–221, A1–A32 

Bering, J. M. & Povinelli, D. J. (2003). Comparing cognitive development. In D. Maestripieri (Ed.), Primate 

psychology: Bridging the gap between the mind and  behavior of human and nonhuman primates (pp. 

205–233). Harvard University Press. 

Bird, C. D., & Emery, N. J. (2009a). Insightful problem solving and creative tool modification by captive nontool-

using rooks. Proceedings of the National Academy of Sciences, 106(25), 10370–10375. 

Bird, C. D., & Emery, N. J. (2009b). Rooks use stones to raise the water level to reach a floating worm. Current 

Biology, 19(16), 1410–1414 

Boesch, C., & Boesch-Achermann, H. (2000). The chimpanzees of the Taï Forest: Behavioural ecology and 

evolution. Oxford University Press. 

Brach, T. (2004). Radical acceptance: Embracing your life with the heart of a Buddha. Bantam Books. 

Butovskaya, M. L., & Kozintsev, A. G. (1996). A neglected form of quasi-aggression in apes: Possible relevance for 

the origins of humor. Current Anthropology, 37(4), 716–717. 

Channel 4 News (2011, June 9). Urinating chimp is ‘scientifically interesting’ [Video]. YouTube. 

https://www.youtube.com/watch?v=vTgihteq1MU&t=2s 

Chemero, A. (2011). Radical embodied cognitive science. MIT press. 

Clark, A., & Thornton, C. (1997). Trading spaces: Computation, representation, and the limits of uninformed 

learning. Behavioral and Brain Sciences, 20, 57–90. 

Clatterbuck, H. (2018). The logical problem and the theoretician's dilemma. Philosophy and Phenomenological 

Research, 97(2), 322–350. 

Cognitive Evolution Group (2010a). Study review coordinator manual. rev. 4.0. University of Louisiana. 

Cognitive Evolution Group (2010b). Manual of standard operating procedures for chimpanzee cognition 

laboratory, rev. 7.2. University of Louisiana.  

Dacey, M. (2016). The varieties of parsimony in psychology. Mind & Language, 31(4), 414–437. 

Darwin (1871). The descent of man. [Reprinted Modern Library, New York, 1982] 

Dennett, D. (2009). Darwin's “strange inversion of reasoning”. Proceedings of the National Academy of 

Sciences, 106 (Supplement 1), 10061–10065. 

Ebel, S. J., Schmelz, M., Herrmann, E., & Call, J. (2019). Innovative problem solving in great apes: The role of 

visual feedback in the floating peanut task. Animal Cognition, 22(5), 791–805. 

Fayet, A. L., Hansen, E. S., & Biro, D. (2020). Evidence of tool use in a seabird. Proceedings of the National 

Academy of Sciences, 117(3), 1277–1279. 

Fragaszy, D. M., & Mangalam, M. (2020). Folks physics in the twenty-first century: Understanding tooling as 

embodied. Animal Behavior and Cognition, 7(3), 457-473.  

Gallagher, S. (2017). Enactivist interventions: Rethinking the mind. Oxford University Press. 



                                                                        Povinelli & Henley   410 

 

Ghirlanda, S., & Lind, J. (2017). ‘Aesop's fable’ experiments demonstrate trial-and-error learning in birds, but no 

causal understanding. Animal Behaviour, 123, 239–247. 

Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Harvard. 

Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton,  N. S., & Taylor, A. H. 

(2019). New Caledonian crows use mental representations to solve metatool problems. Current Biology, 

29(4), 686–692. 

Hanus, D., & Call, J. (2011). Chimpanzee problem-solving: Contrasting the use of causal and arbitrary cues. Animal 

Cognition, 14(6), 871–878. 

Hanus, D., Mendes, N., Tennie, C., & Call, J. (2011). Comparing the performances of apes (Gorilla gorilla, Pan 

troglodytes, Pongo pygmaeus) and human children (Homo sapiens) in the floating peanut task. PLoS 

One, 6(6), e19555. 

Hennefield, L., Hwang, H. G., Weston, S. J. & Povinelli, D. J. (2018). Meta-analytic techniques reveal that corvid 

causal reasoning in the Aesop’s Fable paradigm is driven by trial-and-error learning. Animal Cognition, 

21(6), 735–748. 

Herrmann, E., Wobber, V., & Call, J. (2008). Great apes' (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo 

pygmaeus) understanding of tool functional properties after limited experience. Journal of Comparative 

Psychology, 122(2), 220–230. 

Hicks, T. C., Kühl, H. S., Boesch, C., Dieguez, P., Ayimisin, A. E., Fernandez, R. M., Zungawa, D. B., Kambere, 

M., Swinkels, J., Menken, S. B. J., Hart, J., Mundry, R., & Roessingh, P. (2019). Bili-Uéré: A chimpanzee 

behavioural realm in northern democratic republic of Congo. Folia Primatologica, 90, 3–64.  

Hobhouse, L. T. (1915). Mind in evolution. Macmillan. 

Hoerl, C., & McCormack, T. (2019). Thinking in and about time: A dual systems perspective on temporal cognition. 

Behavioral and Brain Sciences, 42, e244: 1– 69. 

Holzhaider, J. C., Hunt, G. R., Campbell, V. M., & Gray, R. D. (2008). Do wild New Caledonian crows (Corvus 

moneduloides) attend to the functional properties of their tools? Animal Cognition, 11(2), 243–254. 

Hopkins, W. D., Bard, K. A., Jones, A., & Bales, S. L. (1993). Chimpanzee hand preference for throwing and infant 

cradling: Implications for the origins of human handedness. Current Anthropology, 34, 786–790. 

Horner, V., & Whiten, A. (2007). Learning from others' mistakes? Limits on understanding a trap-tube task by 

young chimpanzees (Pan troglodytes) and children (Homo sapiens). Journal of Comparative Psychology, 

121(1), 12–21.  

Hunt, G. R., & Gray, R. D. (2004). The crafting of hook tools by wild New Caledonian crows. Proceedings of the 

Royal Society of London. Series B: Biological Sciences, 271(suppl 3), S88–S90. 

Hunt, G. R., Gray, R. D., & Taylor, A. H. (2013). Why is tool use rare in animals. In C. M. Sanz, J. Call, & C. 

Boesch (Eds.) Tool use in animals: Cognition and ecology, (p. 89-118). Cambridge University Press. 

Jacobs, I. F., & Osvath, M. (2015). The string-pulling paradigm in comparative psychology. Journal of Comparative 

Psychology, 129(2), 89–120. 

Jelbert, S. A., Taylor, A. H., Cheke, L. G., Clayton, N. S., & Gray, R. D. (2014). Using the Aesop's fable paradigm 

to investigate causal understanding of water  displacement by New Caledonian crows. PloS one, 9(3), 

e92895. 
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Appendix 1 

 

Toward the Reinvention of the Study of Higher-Order Reasoning in Animals  

 

One of the reviewers of our article, after expressing sympathy with our main thesis, did not wish 

to let go of the rope completely. Surely somewhere out in the vast, existing genre of comparative 

psychology there must be an experimental protocol that could allow for a strong inference about the 

operation of higher-order causal reasoning in animals. Thinking aloud, the reviewer gestured to a familiar 

study involving a vertical transparent tube with a peanut at the bottom that can be retrieved only by filling 

the tube with water (see Mendes et al., 2007; see also Ebel et al., 2019; Hanus et al., 2011). The reviewer 

wondered if, with strict parameters, a cleaned-up variant of such a test could suffice: (a) the peanut would 

be out of reach at the bottom of the tube, (b) the tube would have no water inside (presumably to rule out 

some arcane associative learning explanation), and (c) the animal must never before have been presented 

with this set-up “or anything similar” (a familiar refrain when setting up such tests).11 In the reviewer’s 

imagination, the animal, thus constrained, would have only one option to retrieve the peanut: they would 

need to “float it out” by using water from the cage’s drinking nozzle. If they did so, the reviewer 

wondered, wouldn’t this constitute a valid investigation of higher-order reasoning? After all, there would 

be no previous “learning history” or “clues within the task” to explain the performance. Finally, if this 

task does not get at higher-order reasoning, the reviewer asked, could we suggest one that would? Below, 

we address both of these questions. We end with a protocol for how comparative psychology can move 

forward. 

We confess that after almost two decades of articulating why each extant claim for higher-order, 

role-based, relational reasoning in animals (e.g., theory of mind, abstract same/different judgments, 

analogical and hierarchical reasoning, logical rules, etc.) is subject to the flaw elucidated in our main 

report, we do sometimes tire of engaging in what some see as a parlor trick. Still, there are several reasons 

why in this case we are actually happy the reviewer floated one (final?) task variant to disrobe. First, the 

reviewer’s request offers a chance to show that we are not cherry-picking tasks especially vulnerable to 

our arguments. Second, it offers another case study of why pitting ill-specified models of “learning 

history” against ill-specified “higher-order” alternatives have impeded progress in this area. Finally, it 

offers one more opportunity for the sympathetic reader to assess our claim that the asymmetric 

dependency relationship between first-order, perceptually-based relational reasoning and higher order-

order, structural, role-based relational reasoning systematically applies to all tasks that fall under the 

scope of the genre we have identified (and thus, with luck, allow any such reader to reject the incoherent, 

but frequent, complaint that our explanations are ad hoc; see footnote 9).  

With that introduction, let us now formally lay out the best version of the reviewer’s inductive 

argument about the spitting-in-a-tube task’s relationship to higher-order reasoning we can muster. (NB: 

The text in bold refers to what we think are suppressed premises in the reviewer’s thinking that we 

believe need to be made explicit in order to construct the best version of their argument.) The imagined 

subject of the study will be our chimpanzee, Apollo:  

 

 
11 In suggesting this constraint, the reviewer did not engage with our detailed analysis as to why it is probably impossible to 

present an organism with stimuli that bears no perceptual similarity to anything they have encountered in their developmental or 

evolutionary history (see main text). As we point out, the genre of comparative psychology protocols that are designed to 

investigate higher-order reasoning (including this reviewer’s proposal) all rest upon scientific folklore: the idea that the 

experimenter can intuitively create stimuli that are similar enough to things the subjects already know about/represent, but 

different enough to allow just enough daylight between the competing explanations to squeeze out an inference that a certain 

pattern of results (e.g., spitting in a tube) implicates the necessity of higher-order thinking. The reviewer is not alone. Indeed, 

Mendes et al. (2007) believed they had done precisely this in their original version of the spitting-in-a-tube task: “One alternative 

to an insightful solution is that subjects previously solved this problem and here they simply remembered the solution. Although 

we cannot rule this out, we think that it is unlikely. Subjects had never received this task in the past and water was never required 

as a solution for a problem” (p. 454). (NB: “Insightful solutions” and higher-order causal reasoning are not synonymous, nor do 

Mendes et al. [2007] claim they are.) 
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P1  Apollo possesses the requisite knowledge and skill to suck water out of a nozzle as well 

as to spit it out;  

P2  Specifically, Apollo possesses the requisite knowledge and skill to spit water into a 

tube (or, if one prefers, “for Apollo, the tube affords water spitting” or even, “the 

water in Apollo’s mouth affords tube-spitting); 

P3 Apollo has never been presented with this setup “or anything similar” before;  

C  If Apollo spits water into the tube and the peanut rises to within reach, his cognitive 

system must have deployed higher-order reasoning related to constructs such as 

<weight> or <buoyancy> or <floating>.  

 

Beyond the obvious tension between P2 and P3, it can be quickly shown that this argument is simply a 

variant of the weak (flawed) argument we detailed in our main report. Even if one granted (which we do 

not, see below) that the only possible goal-directed description of Apollo’s spitting behavior is:  <spit 

water in tube to make peanut rise> (or, put more richly, “Apollo imagines spitting water into the tube, the 

tube filling with water, and the peanut rising”), C would still be just as weak as the inferences illustrated 

in our main report. The perceptual representations (sucking water out of tube, filling mouth with water, 

spitting water into tube, water rising in tube, etc.) are both necessary and sufficient to execute the alleged 

goal-directed action. Consider the issue starkly: if Apollo did not possess such stable perceptual 

representations, what causal role could ungrounded (dare we say “free-floating”), higher-order constructs 

play in his cognitive economy? This bespeaks the central problem we point out in the main text: once we 

accept the existence of first-order perceptual representations (an uncontroversial construct in current 

representational theories of cognition; see Penn et al., 2008a), it is incumbent upon us to take their causal 

role seriously.12  

In addition to the fatal analysis above, it is important to note that the claim that when Apollo spits 

into the tube, he is intending to make the peanut rise is assumed, not proven. Thus, any inferences that 

rely on this premise are based upon circular reasoning. The assumption is that if Apollo is forced into the 

carefully orchestrated, tightly constrained situation dreamt up by the reviewer (a situation previously 

dreamt up by Mendes et al., 2007), and then, at some point, he performs the target behavior (spitting 

water in the tube), we are secure in concluding that he intended to produce the specific perceptual causal 

fact about the world of interest to the experimenter (the peanut rising). But such an assumption is 

unwarranted. Apollo’s behavioral propensities were straightjacketed from the beginning: he cannot use 

his fingers to work the peanut from the tube (the tube has been designed to prevent his apishly large 

fingers from fitting inside); he cannot lift the tube and shake the peanut onto the floor (the tube is 

anchored with chimp-proof nuts and bolts to the wall); he cannot use a stick to fish it out (all stick-like 

objects have been carefully removed). Thus, after some time, Apollo executes the only goal-directed 

action related to the food that remains in his repertoire: <spit water into the tube>.13 The constrained 

 
12 Of course, one could reject the standard representationalist framework and adopt a radical version of embodied or enactivist 

view of “cognition” that denies the role of mental representations altogether (cf. Chemero, 2011; Gallagher, 2017). Under such a 

view, however, the causal role of higher-order constructs would have even less of a place in explaining Apollo’s behavior. On the 

other extreme, one might call for a view of cognition that denies the distinction between first-order, perceptually-based relations 

and higher-order, structural, role-based constructs and relations, or claims that in practice these distinctions cannot be made. 

Before one charges headfirst in that direction, however, it is worth noting even if one were to accept such a view as coherent 

(which we do not), there would be little reason to conduct experiments on animals in the first place. We could simply ask human 

subjects to describe particular physical or social phenomenon to which animals are naturally responsive. If the human-derived 

descriptions contained traces of higher-order thinking, we would, on this view, be licensed to assume the animals themselves also 

possess such higher-order thinking. To illustrate, when humans observe a video of Apollo using a stick to rake in a banana, and 

they describe his actions using language about space and time, we would be able to conclude that Apollo thinks about <space> 

and <time>. We advocate resisting such an approach. Instead, we advocate heeding a repurposed version of Dennett’s (2009) 

earlier admonition: In order to behave in space and time it is not requisite to know a thing about <space> or <time>.  
13 Strictly speaking, this is untrue. In a follow up study to Mendes et al.’s (2007) study with orangutans, Hanus et al. (2011) 

tested chimpanzees and gorillas on slight variants of the spitting-in-a-tube task. At least one chimpanzee in their study developed 

the solution of urinating into the tube to get the peanut (for video, see Channel 4 News, 2011). To the uninitiated reader, a chimp 
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situation now dictates that the peanut will now move toward him. Once this causal fact is discovered, 

Apollo repeats his action.14 Although we cannot prove this, we are even willing to grant the very likely 

possibility that Apollo’s spitting behavior is goal-directed with respect to the peanut. But why must we 

assume that his goal is to make the peanut rise as the waters crest inside the tube (let alone to make the 

peanut <float>). His goal may be to use the water to make contact with the peanut in much the same 

manner as if the experimenters had not deprived him of his sticks. Given that we are writing this article to 

celebrate the twentieth anniversary of the publication of our book, Folk Physics for Apes, it is probably 

worth noting that one of the central conclusions of that project was that an irreducible element of the 

chimpanzee’s first-order representation of tools is the ability of one object (the tool) to make perceptible 

contact with another object (e.g., a food reward) [see Povinelli, 2000, Chapter 12, pp. 303-308; see also 

Hennefield et al., 2018].) (NB: In the context of the asymmetric dependency problem, any higher-order 

claim that Apollo’s spitting behavior is a goal-directed act aimed at making the peanut <float> to within 

reach, entails that the perceptual claim that he knows how to make the water contact the food. Whether he 

initially integrates this with the perceptual fact that such contact will lead to the upward motion of the 

peanut is beside the general point we are making. In either case, the first-order, perceptual-based 

components of his reasoning are both necessary and sufficient to explain his initial and subsequent spits. 

Thus, we do not need to appeal to any additional explanatory devices.15 

At this juncture, we are used to intelligent minds (even our own) still resisting: But wait, why 

would Apollo spit water into the tube unless he knew that it would make the peanut float? And <floating> 

and <sinking> are higher-order constructs related to variables like <weight> and <buoyancy>. So, by 

spitting into the tube, Apollo must be reasoning about such things. As we have just seen, however, we 

ought to calm such folk thinking with a rational response: Those thoughts are circular. They assume the 

presence of the very thing for which we were claiming to test. The naked fact that humans possess an 

explanatory drive that asks why observable events occur, says nothing about whether Apollo must also 

possess a reason for his repeated spitting beyond the fact that it produces the effects he intends. Clearly, 

then, our answer to the reviewer’s first question is no, the spitting-in-a-tube task does not offer any hope 

of assaying higher-order thinking. First-order, perceptually-based, relational reasoning is both necessary 

and sufficient to explain Apollo’s intelligent actions in this task.  

 We thus arrive at the reviewer’s final question: Can we suggest a task that would assay higher-

order reasoning? This is a tricky question (at least as tricky as the history of the rope tricks that motivated 

our original study). On the one hand, we are tempted to say, yes, we can, and direct the interested reader 

to the list of seventeen experimental protocols we outlined in the appendix of Penn at al. (2008b, pp. 165-

169). It should be noted, however, that one of the architects of those protocols (DJP) is even less sanguine 

now than he was then about the ability to overcome the asymmetric dependency problem within the 

standard experimental paradigm of comparative psychology. Most (if not all) of those protocols clearly 

fall prey to the analyses herein. And some are scaled-up variants of protocols already known to be of 

great difficulty for animals. So the simple answer is, no, we cannot outline a standard protocol in this 

genre that directly overcomes the asymmetric dependency problem. Indeed, our ropes report was, until 

now, just one among dozens of lonely residents in an orphanage of abandoned experiments (involving 

 
urinating in the middle of an experimental protocol might seem to muddy the waters. To the contrary, we believe it highlights the 

ubiquity of the first-order, perceptual representations that organisms must carry inside them.  
14 This matches the results with the orangutans reported by Mendes et al. (2007) (see also Ebel et al., 2019). On average, the 

orangutans first spat in the tube 540 s (9 min) after it was first presented to them. The time to subsequent spits decreased 

exponentially. 
15 Those who have spent considerable time around apes in captivity will, from time to time, find themselves recounting tales of 

how these animals cleverly fill their mouths with water and wait for an unsuspecting dupe to pass before their enclosure. The 

backwards leap of such hapless humans, coupled with their ripe, expletive-filled exclamations, is a causal fact about the world 

that captive chimpanzees know a great deal. Indeed, spitting water (or flinging feces) to create the movement of distal humans is 

a favorite goal-directed activity of many captive apes (see Hopkins et al., 1993). For those who wish to hold out for a higher-

order, structural, role-based interpretation on such behavior, we suggest consulting Butovskaya and Kozintsev’s (1996) analysis 

of both of these actions as a form of proto mockery. (To be fair, tales of being doused by spat water (or flung feces) are told by 

many a casual zoo visitor, as well).  
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both chimpanzees and young children) that have remained unpublished because we long ago realized they 

suffer from a common flaw: the asymmetric dependency problem. We are well aware this answer will not 

satisfy experimentalists whose livelihood and reputations depend upon, well, conducting experiments. 

Indeed, lectures on the asymmetric dependency problem are frequently met with an indignant reaction: 

Well, then what are we supposed to do?  

This frustration has led to a reverse parlor trick in which philosophers and experimentalists 

propose new experiments they believe can implicate the necessity of higher order reasoning in animals. 

Elsewhere, we have reviewed the fate of these proposals. Rather than spelling out our critiques of each of 

these again, and risk this publication becoming even more recursive than it already is, it may be more 

productive to examine the lessons learned from one of these scholars, Elliot Sober, who elected to enter 

the game. After acknowledging the serious implications that our analysis poses for designing experiments 

that can provide good evidence that chimpanzees possess a theory of mind—implications we have 

hopefully generalized and expanded upon in this article—Sober (2016a) proposed a “two-winged” 

experiment involving chimpanzees navigating their way through opaque tunnels and trap doors affixed 

with buzzers and bells. For present purposes, the details do not matter. What is instructive is Sober’s 

(2016a) partial concession to Andrews' (2016) objection that his proposal would not actually overcome 

the asymmetric dependency problem (the so-called “logical problem”): 

In designing the two-winged experiment, I wanted to find two tasks that would ‘‘look different’’ 

to chimpanzees if they were behavior readers, but might ‘‘look the same’’ if they were mind 

readers. It may be that the tasks I chose were not different enough. Opaque and transparent 

tunnels seem rather different from silent and noisy trapdoors, but both tasks involve obtaining 

food by reaching into  a chamber where a human being is present. This may mean that the 

details of the experiment I described need to be tweaked. I nonetheless hope that the two-task n-

trial format will be useful in cracking what is in fact a very hard nut (p. 399).  

Although we do not have the space to trace out the full implications of this concession, we will at 

least note that it highlights two core reasons why any future variants of his experimental design are 

destined to fail him. First, the design rests upon the unprincipled titration we have repeatedly stressed: 

designing a task (or two paired tasks) that is (or are) robustly accessible to the subjects’ perceptual 

representations, and yet are not so accessible that perceptual-based reasoning can fully explain the results. 

Second, and related, his approach pits a higher-order account (in this case, theory of mind) against a 

lower-order, perceptually-based account, without explicitly considering the full implication of the fact 

that any purported higher-order thinking on the part of the apes necessarily requires robust, paired 

perceptual representations from the lower-order system as input (i.e., the asymmetric dependency 

problem).16  

 
16 For those who wish to puzzle over the relationship between the details of Sober’s (2016a, b) proposed experiment and the 

asymmetric dependency problem, we can think of no better place to begin than the rhetorical question posed by Sober (2016a): 

“If chimpanzees are not mind readers, why should their thinking ‘‘I will get food if I use the opaque tunnel, but not if I use the 

transparent tunnel’’ raise the probability of their thinking ‘‘I will get food if I use the silent trapdoor, but not if I use the noisy 

trapdoor’’? (p. 398). That this is an erotetic move and not a serious question, is suggested by the simplicity of the answer: 

Because in both cases the experimenter turns toward Apollo and snatches away his food! And, once again, before rushing off to 

try to patch up this fatal flaw (such as tweaking the exact manner in which the human <notices> the chimpanzee), it should be 

noted that this would merely recapitulate the individual histories of the innumerable task variants strewn throughout this genre of 

comparative psychology—a process that always ends in erotesis: Well, how else could they do it? Perhaps the greatest irony of 

deploying such rhetorical devices occurs when the user then immediately proceeds to admonish us not to “concoct” our 

representational claims “out of thin air” and to be sure they "have some antecedent and independent plausibility in cognitive 

science” (Sober, 2016a, p. 398). For what it's worth, we are quite comfortable letting the reader decide whether our ecumenical 

assumptions about cognition are rooted in mainstream cognitive science (see Penn et al., 2008). To be clear, we are not faulting 

Sober (2016a,b) and others for wanting to play the parlor game. It’s fun. We know because our own investigations of higher-

order reasoning in chimpanzees followed the same line of reasoning. First, we designed tasks that we (as adult humans) could 

interpret in a higher-order manner. Next, we let our chimpanzees solve the task. After that, we presented them with "novel" (read: 

"perceptually different”) variants of the task that we could also interpret in the same higher-order manner. Our reasoning? If the 

chimpanzees could cognize a higher-order relation common to the two tasks, despite the perceptual differences, they ought to 

exhibit rapid transfer⎯after all, How else could they do it? (see Povinelli, 2012, for an exhausting case study of this approach in 
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The good news is that we will now end on a positive, forward-looking note. Despite not having a 

secret formula that can rescue us from our own analysis, we do possess a nuanced, forward-looking, 

multi-phase protocol for how comparative psychologists who are interested in higher-order reasoning 

could spend their time. In phase one, psychologists would practice radical acceptance (see Brach, 2004), 

deeply absorbing the truism that recognizing a problem is distinct from having a solution. The 

experiments of comparative psychologists are situated within a representationalist tradition whose bearers 

seek to discern the nature of the mental states that animals possess. And although the precise views of 

individual practitioners may differ, the tradition carries infrequently articulated assumptions about the 

necessary and sufficient conditions for higher-order thinking. Once these suppressed assumptions are 

made explicit (see Penn et al., 2008a), difficult choices arise. As we explained in footnote 13, we are not 

suggesting that there are no alternatives to a representationalist stance toward animal cognition. Fragaszy 

and Mangalam’s (2020) essay in this special issue explores one such view (see also Barrett, 2011). But 

we are suggesting that, properly understood, these alternatives are even less friendly toward the current 

experimental project of trying to demonstrate higher-order thinking in animals than ours. To summarize, 

phase one requires making one’s commitments about cognition explicit, beginning and ending with an 

account of how the sensory apparatuses of organisms under study interact with the rest of the body and 

brain to generate a temporally stable basis for behavior (see Penn et al. 2008a; Povinelli, 2012). 

 All comparative psychologists who pass phase one would then advance to phase two. In this 

phase, practitioners would politely agree to eschew the false dichotomy between “behaviorism”, 

“associative learning”, “arbitrary rule learning” on the one hand, and “causal learning” (or some such), on 

the other. Beginning with Folk Physics for Apes, we joined the voices of many others in arguing that such 

contrasts are too colloquial to make progress in the broader debates (for our contributions to this 

discussion see Penn et al., 2008a; Penn & Povinelli, 2013; Povinelli, 2000, 2012; Povinelli & Penn, 

2011). Ironically, in the context of the structurally similar debate over higher-order social reasoning (i.e., 

theory of mind), discussed earlier, Andrews (2016) has complained that our first-order representational 

hypothesis (what has come to be known as the "behavior-reading" hypothesis in the literature) is “a bit of 

shifting sand that does not manage to stay still for very long" (p. 385), a captivating and poetic 

restatement of the unfounded and illogical criticism that such explanations are ad hoc (see above). 

Curiously, as he labored over what he described as the "hard nut" of designing an experiment that can 

isolate the unique causal work of the higher-order system, Sober (2016a) endorsed the shifting sand 

metaphor. He asserted that while our account explicitly states what is not involved in explaining 

chimpanzee social behavior (i.e., representations of <mental states>, it fails to specify “the causal 

connections between belief states17 that behavior-reading hypotheses are permitted to postulate” (p. 399). 

Alas, in addition to misunderstanding the full scope of the asymmetric dependency problem, this assertion 

has the additional disadvantage of being demonstrably false. Not only have we precisely specified the 

representational commitments of our hypothesis about human cognition (see Penn et al. 2008a), we are 

still patiently waiting for a reciprocal gesture on the part of those scholars who are committed to the idea 

that higher-order representations are necessary to explain the results of the genre of experiments in 

question. To date, however, instead of laying their cognitive cards on the table, our most vocal critics 

have instead attempted to saddle our ideas with monikers that bear no relationship to them (e.g., 

“associative learning”, “inflexible rule learning”, “modified behaviorism”, etc.; see Povinelli, 2012, p. 20-

 
the context of the higher-order construct of <weight>). Indeed, one of us (DJP) was once so convinced of the merits of this 

strategy, that for many years he asserted that if a chimpanzee showed evidence that they cognized the contrast between, and the 

commonality within, two simultaneously-presented, infinitely large sets of perceptually distinct tasks, one set requiring them to 

discover contingencies involving the color of stimuli and the other set involving the shape of stimuli, this would provide evidence 

for the higher-order concepts of <color> and <shape>. Careful reflection on the implications of the asymmetric dependency 

problem has disabused him of this idea. 

17 Nothing in the current debate hinges on whether one chooses to describe these internal representations as "belief states" (as 

Sober, 2016a does here) or "first-order, perceptual-based representations" (see Arruda & Povinelli, 2016, for one view on why we 

ought to consider such first-order mental states as functioning like belief and desire states; for a similar conclusion, see Newen & 

Starzak, 2020). 
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23, for a dissection of these polemics along with additional references). Sadly, we know first-hand how 

hard it can be for experimentalists to abandon long-standing, culturally embedded rhetorical devices from 

their “work products" (see Povinelli, 2000, pp. ix-xiii; Barker & Povinelli, 2019). However, it seems to us 

that success in phase one (spelling out one’s commitments about the human cognitive system) would 

naturally pave the way for success in phase two. Obviously, those comparative psychologists failing 

phase two, cannot advance to phase three. Instead, they will be forever fated to chase Andrews' (2016) 

shifting piles of sand—but for the opposite reason they imagined.18 

 Finally, in phase three, comparative psychologists would, for the time being, end all attempts to 

test for higher-order reasoning in animals. Instead, they would devote their unique intellectual resources 

toward understanding how higher-order reasoning modulates adult human behavior in ecologically 

relevant tasks. Specifically, they would work to identify the causal fingerprints of higher-order thinking in 

everyday human behaviors, behaviors that can be (and often are) managed by first-order perceptual-based 

reasoning alone. If techniques to prime human higher-order reasoning could be refined, researchers could 

then search for law-like impacts on both the speed and accuracy of simple physical or social judgments, 

as well as other, more temporally extended behavioral topographies. This could be achieved using 

remarkably simple tasks (for preliminary work along these lines, see Zhang et al., 2016). One exciting 

possibility is that doing so might upend some of our worst folk intuitions about the impact of higher-order 

reasoning on everyday behavior (for example, the intuition that it uniformly “improves” performances). 

Regardless, once identified, such relationships might allow psychologists to identify “causal workspaces” 

in which higher-order thinking affects the kinds of behaviors we share in common with primates and 

other taxa (see Povinelli, 2012, Chapter 11, for a brief discussion of this idea).  

Although this phase of our protocol may seem unduly aimed at understanding human cognition, it 

might just create a new genre of experimental procedures in comparative psychology that do not suffer 

from the asymmetric dependency problem. The hope is that such investigations would be grounded in 

something more substantial than the folk intuitions of psychologists themselves, intuitions on full display 

in our sympathetic reviewer’s musings about the spitting-in-a tube task. To be sure, the success of this 

final phase presupposes an interest in shouldering up against the much harder task administered in phase 

one: acknowledging that comparative psychology has a serious problem. Widespread interest in doing so 

would be encouraging. After all, acknowledging one has a problem is often a first step toward recovery. 

 

 

 
18 Note from DJP: I have a folk theory about why the criticism that our hypothesis is ad hoc appeals to so many thinkers, despite 

the fact it is so blatantly false. One afternoon a couple of years ago, an enterprising graduate student approached me after I 

delivered a lecture on this topic in Leipzig, Germany. She explained that she was testing chimpanzees for some facet of higher-

order thinking at the Max Planck Institute for Evolutionary Anthropology. She further explained that she was very familiar with 

the asymmetric dependency problem (the so-called "logical problem"). "Honestly, it keeps me up at night," she said. "Why is 

that?" I asked. She replied: "Because all day long I come up with ideas that I am sure overcome the very hard problem you have 

isolated in our field. But then at night, as I am about to fall asleep, I suddenly realize that, no, my latest protocol suffers from the 

same problem. It's like your hypothesis is a kind of magic wand that makes my intricate web of procedures and control conditions 

just vanish!" I sighed: "I understand. I had the same experience⎯for twenty years." My folk theory is this: As one's mind deploys 

the same structural system over and over again to work around a problem that is not avoidable using that system, the instability 

caused in one's own thinking is attributed to the problem itself, not to one's own (unexamined) assumptions. I would not be 

surprised to learn that this phenomenon has a well-known psychological name. 


